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Preface

Online user interaction is a topic of considerable current interest, both from, a re

search as well as from a practical perspective. V irtua lly a ll online user interaction 

technologies in use today (e.g., personalization and customer relationship manage

ment software) are based on the notion of storing as much historical customer session 

data as possible, and then querying this data store in order to react to customers 

(e.g., offering a discount on an item that the user has shown interest in). The holy 

grail o f online user interaction is an environment where fine-grained, detailed his

torical session data can be queried based on current online behavioral patterns for 

use in formulating near real-time responses. Unfortunately, most existing online user 

interaction technologies are unable to scale to support the high user loads and large 

volumes of customer data that are typical o f many e-commerce sites today. Provid

ing true online user interaction requires that data be retrieved from large persistent 

databases w ithin subsecond time frames, and typically this must be done under heavy' 

user loads. Thus, the primary bottleneck lies in existing database systems that cannot 

effectively support these requirements.

This research attempts to present an approach to perform true online user in

teraction. The proposed framework entails: 1) observing specific instances of online 

behavior, 2) correlating this specific behavior w ith the vast amounts of historical be

havior collected over time, and 3) reacting to the user. Our solution approach consists 

o f two key ideas: 1) a data warehouse to store historical behavior, and 2) rule caching 

to track online behavior and correlate w ith the historical data.

The data warehouse is a critical component in such an online user interaction

1
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system. The warehouse mast store large volumes of data and provide fast response 

times for queries on this data. The warehouse is typically vast (e.g., several hundred 

gigabytes to a few terabytes in size), and the query operations required on this data 

w ill typically be complex, usually requiring joins o f several large tables. In addition, 

given the interactive nature of the Web, query results must be delivered w ithin sub- 

second time frames, even in the presence of heavy user loads (e.g., thousands to tens 

of thousands of simultaneous users). We address these issues by presenting a new 

data storage and retrieval paradigm for data warehouses, referred to as Datalndexes. 

In addition to the Datalndex structures, we present a set of efficient algorithms for 

performing jo in  queries using the Datalndex structures. A mathematical analysis 

is presented which categorizes the cost of query evaluation for common classes of 

queries using Datalndexes. In addition, the results of an implementation based on 

Datalndexes is presented. Both the analysis and the implementation results indi

cate that Datalndexes significantly outperform existing indexing structures in many 

cases, and that they can provide the subsecond response times required for online 

user interaction.

While the data warehouse provides access to the historical data, it  is also necessary 

to track current user behavior and correlate it  w ith the historical behavior, so that 

an appropriate response can be generated for online user interaction. We refer to the 

behavior representation of a user as a dynamic profile, since it  captures changes in user 

behavior. Fast generation of dynamic profiles is d ifficult when a site is experiencing 

heavy user loads. To address this issue, we propose an online user interaction system 

that consists of a Datalndex-based data warehouse and a caching module. The data 

warehouse stores the information needed to create dynamic profiles and provides 

very fast access to this information. The caching module further improves the system 

performance by storing frequently requested profile information.

An implementation of an online user interaction system based on the proposed

2
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framework is presented, along w ith a set of performance results which indicate that 

the system is indeed capable of providing near real-time responses, even under heavy 

user loads. Our performance results demonstrate the importance of an efficient data 

warehouse in the overall system to enable scalable online user interaction.

3
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Chapter 1

Introduction

The growth of electronic commerce during recent years has resulted in new business 

strategies, as well as the emergence of new technologies to support these strategies. 

One such business strategy that has gained momentum recently is mass customiza

tion [105, 106]. The idea behind mass customization is to provide each individual 

consumer w ith products and services that are tailored to his or her preferences. While 

mass customization is very difficult to realize in the physical world, it  is much more 

feasible w ith electronic commerce, since Web technologies allow content to be cus

tomized for users based on their preferences. In fact, mass customization originally 

referred to the physical modification of products and services to make them fit each 

consumers needs [105]. More recently, mass customization has evolved to encompass 

a wide range of methods for customizing the consumer experience [106]. The consumer 

experience includes the physical products, which can be customized in function or in 

appearance, as well as the presentation of those products, which can be customized 

automatically or w ith the help of the consumer.

Web technologies play a key role in the consumer experience, prim arily in terms 

of the presentation aspect. Web technologies allow the presentation o f products to be 

“personally'’’ designed for each consumer, based on certain criteria (e.g., user prefer

ences, past purchasing behavior). A common theme o f these technologies is that they 

attempt to provide some form of online interaction w ith users. Thus, throughout 

this dissertation, we refer to these technologies collectively as online user interaction

4
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technologies.

There are a number of reasons why online user interaction schemes have emerged. 

For instance, such technologies help consumers find the products they are looking for, 

reducing the information overload that consumers often experience. This in turn can 

convert browsers into buyers. Online user interaction schemes are also used to improve 

cross-sell by suggesting additional products for the customer to purchase. Another 

very compelling reason to use such technologies is to build customer loyalty. In e- 

commerce, where a site’s competitors are only a click or two away, gaining consumer 

loyalty is an essential business strategy [113, 112].

Recent evidence suggests that online user interaction solutions can indeed have a 

significant business impact. For instance, Amazon.com is well known for its use of 

online customer interaction technology. In particular, Amazon’s use of recommenda

tion technology is believed to be the reason for Amazon’s loyal customer base: 78% 

of Amazon’s sales are from returning customers [45]. The business impact of online 

user interaction solutions is itself an interesting research problem, but is beyond the 

scope o f this dissertation.

The basic idea behind virtua lly a ll online user interaction schemes is to accumu

late vast amounts of historical data (usually stored in a database system) and then 

query this historical information based on ’’ current” visitation patterns to provide a 

personalized experience. For example, suppose that analysis of an online bookseller’s 

historical data were to suggest a strong link between interests in Science Fiction and 

Romance. Based on this knowledge, the bookseller might recommend a recent best

seller from the Science Fiction category to all shoppers browsing Romance books. 

Most current personalization software, such as NetPerceptions [104] or LikeMinds [9], 

offer the above-mentioned functionality, popularly known as recommendations. I t  so 

turns out that the technology underlying virtually a ll online recommendation engines 

is a clustering algorithm called collaborative filtering [124]. Essentially, collaborative

5
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filtering places users into static groups based on their preferences.

While such static profiling has indeed provided benefits, the static nature of this 

approach is problematic. For instance, consider the case where an e-shopper purchases 

a Chemistry textbook for his brother from an online bookseller, and later returns to 

the booksite looking for books for himself. After a few clicks, the system should 

recognize that the user is not interested in Chemistry books in his current visit, 

suppress its knowledge of his past behavior and adjust its responses to be in tune 

w ith his more recent behavior. This is possible only if  the system can recognize 

changing behavior patterns. Thus, true online user interaction requires that profiles 

be dynamic, and therefore reduces to performing the following tasks:

1. Tracking users’ movements or behavior patterns on a site

2. Accessing a vast knowledge base that correlates specific behavior w ith stored 

knowledge, and

3. Generating responses

A critical requirement is that the above tasks must be done in subsecond time frames.

The problem of providing such true online user interaction is, of course, one of 

scale. It is extremely difficult to track tens of thousands o f online shoppers in near 

real-time, and even more difficult to access a database online and provide near real

time responses. This problem is only exacerbated as the number of online shoppers 

increases and as e-commerce sites attempt to collect more fine-grained customer in

formation. The primary bottleneck lies in the underlying database systems - existing 

database systems cannot effectively support the requirements of true online user in

teraction. For this reason, existing online user interaction solutions rely on one of two 

basic approaches: (1) static profiling techniques that fit customers into one of a small

6
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number of predefined static profiles (usually based on statically pre-declared infor

mation, e.g., login or zip code) and provide canned online responses, or (2) delayed, 

offline interaction such as email or direct mail. The former approach is the approach 

taken by personalization software vendors, as described previously, while the latter 

approach constitutes a class of commercial software known as customer relationship 

management (CRM) systems. Clearly, both classes of solutions are not capable of 

meeting the online user interaction requirements outlined above.

1.1 Problems Addressed

This dissertation addresses the problems associated w ith providing scalable online 

user interaction. In particular, we address the following issues:

•  Scalable Data Warehouse Design. A critical component of any online user in

teraction system is an efficient data warehouse. The warehouse must store 

large volumes of data and provide fast response times for queries on this data. 

The warehouse is typically vast, and may contain several types of data (e.g., 

navigational, transactional, demographic). Given that an e-commerce catalog 

may have v irtua lly  an infinite number of possible navigation paths, navigational 

data alone can easily result in warehouse sizes ranging from several hundred gi

gabytes to a few terabytes. The query operations required on this data w ill 

typically be complex, usually requiring joins of several large tables. In addition, 

given the interactive nature of the Web, query results must be delivered within 

subsecond time frames. Furthermore, the warehouse must be able to provide 

such performance even in the presence of heavy user loads (e.g., thousands to 

tens of thousands o f simultaneous users).

7
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•  Efficient Generation of Online Dynamic Profiles. While the data warehouse 

provides access to the historical data in an online user interaction solution, it  is 

also necessary to track current user behavior and correlate it  w ith the historical 

behavior, so that an appropriate response can be generated by the application. 

We refer to the behavior representation of a user as a dynamic profile, since it 

captures changes in user behavior. Generation of dynamic profiles is difficult 

since these profiles must be generated quickly even when a site is experiencing 

heavy user loads.

We next elaborate on these problems.

1.1.1 Scalable Data Warehouse Design

A key component in any online user interaction solution is a data warehouse. The 

warehouse stores the historical customer data (e.g., navigational, transactional, de

mographic) that is used to generate responses. Since responses must be generated 

in subsecond time frames, the warehouse must be able to provide interactive query 

response times. There are several factors that make this a d ifficu lt task:

•  The size of the warehouse is typically vast. Sites are collecting more and more 

data about their visitors. In particular, navigational data can easily add up 

to several hundred gigabytes or a few terabytes of data, especially when one 

considers the number of possible paths that a user can traverse through a Web 

site.

•  The site w ill often experience high user loads. It is not uncommon for popular 

sites to have thousands to tens o f thousands of simultaneous users at the site.

•  The queries are typically ad-hoc and complex, involving joins of very large 

tables.
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Thus, our objective in designing the data warehouse is to design a system which can 

provide fast query response times for complex, ad-hoc queries, even under high user 

loads.

1.1.2 Efficient Generation of Online Dynamic Profiles

A scalable data warehouse alone does not make a complete online user interaction 

solution. It  is also necessary to track current user behavior and correlate it w ith the 

historical behavior, so that an appropriate response can be generated by the request

ing application. We refer to the behavior representation of a user as a dynamic profile, 

since it  captures changes in user behavior. A dynamic profile must be maintained 

for each and every visitor at a site. This requires that a dynamic profile be updated 

each time a user performs some action at the site (i.e., clicks). Furthermore, dynamic 

profiles must be generated very quickly (e.g., in sub-second time frames) so that the 

application can utilize the profile information to make a content delivery decision. 

For instance, a dynamic profile may indicate that a visitor to an online book store 

is about to leave the site without making a purchase. The book site can utilize this 

knowledge, along w ith other information contained in the visitor’s dynamic profile, 

to make a special offer to the visitor to entice him to continue shopping at the site.

1.2 Contributions

This dissertation presents an approach for performing scalable online user interac

tion. The proposed approach allows highly scalable, online user interaction based on 

the real-time integration of a vast amount of extremely fine-grained historical data 

and online visitation patterns o f e-commerce site visitors. The proposed framework 

comprises the following key components:

9
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L  Observing specific instances of online behavior by tracking a large number of 

users (potentially tens of thousands) in real-time as they navigate through a 

site

2. Correlating this specific behavior w ith the vast amounts of historical behavior 

collected over time by performing retrievals from a large data warehouse in near 

real-time, and

3. Reacting to the user by delivering an appropriate user response, in near real

time, based on the system’s knowledge o f the user’s current behavior and the 

information retrieved from the warehouse.

The proposed framework makes a research contribution in two broad areas:

1. Data Warehouse Design

2. Online User Interaction Modeling 

We now expand on our contributions.

1.2.1 Data Warehouse Design

Our work contributes to the physical design of data warehouses, an area that is 

concerned w ith the data structures and algorithms used to store and retrieve data. 

Our contribution in this area is a new data storage and retrieval paradigm for data 

warehouses, referred to as Datalndexes. In addition to the Datalndex structures, 

two efficient algorithms for performing jo in  queries w ith Datalndexes are presented. 

A  mathematical analysis is presented which categorizes the cost o f query evalua

tion for common classes of queries using Datalndexes. In addition, the results o f 

an implementation based on Datalndexes is presented. Both the analysis and the 

implementation results indicate that Datalndexes significantly outperform existing

10
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indexing structures in many cases, and that they can provide the subsecond response 

times required for online user interaction.

1.2.2 Online User Interaction Modeling

Our contribution in this area is the design and implementation of a scalable online 

user interaction system which derives its scalability from an efficient data warehouse. 

We propose an online user interaction system that consists of a Datalndex-based 

data warehouse and a caching module. The data warehouse stores the information 

needed to create dynamic profiles and provides very fast access to this information. 

The caching module further improves the system performance by storing frequently 

requested profile information. An implementation of this system is presented, along 

w ith a set of performance results which indicate that the system is indeed capable of 

providing near real-time responses, even under heavy user loads. Our performance 

results also demonstrate the importance of an efficient data warehouse in the overall 

system.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized into two parts: (I) Scalable Data Ware

house Design, and (II) The Role o f Data Warehousing in Enabling Scalable Online 

User Interaction. Part I begins w ith  an overview of data warehousing and a survey of 

the data warehousing literature that is relevant to this dissertation (Chapter 2). In 

Chapter 3, we present a novel physical design paradigm for data warehouses, including 

the Datalndex structures and a set o f star jo in  algorithms based on these structures. 

In Chapter 4, we present a set o f cost analyses which compare the performance of 

the algorithms proposed in Chaper 3 to existing star jo in  algorithms. We conclude
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Part I w ith a discussion of an implementation of Datalndexes, along w ith a set of 

performance results in Chapter 5.

We begin Part I I  in Chapter 6 w ith an overview of online user interaction tech

niques and a survey of the relevant work in this area. This chapter also includes a 

discussion of several background concepts in online user interaction that are funda

mental to the work in this dissertation. In Chapter 7, we discuss the design of the 

rule warehouse in an online user interaction system, including a comparative analy

sis of alternative designs. In particular, we compare Datalndex-based designs with 

conventional designs. In Chapter 8, we discuss the system architecture of an on

line user interaction system based on our proposed framework and the role of the 

rule warehouse in this system. In Chapter 9, we present the results o f a set of ex

periments which demonstrate the performance of an online user interaction system 

which we have implemented. Our performance results focus on the impact of the rule 

warehouse in the overall system. Finally, we make concluding remarks in Chapter 10.

12
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Part I 

Scalable Data Warehouse Design

13
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Chapter 2

Overview and Survey of Data 
Warehousing

We begin this chapter by providing a general overview of data warehousing. We then 

review the work in data warehousing that is relevant to this dissertation.

2.1 Overview of Data Warehousing

A data warehouse can be defined as a repository of historical data used to support 

decision making [73]. Online Analytical Processing (OLAP) refers to the technol

ogy that allows the user to efficiently retrieve data from the data warehouse. The 

characteristics of OLAP applications are quite different from those o f operational or 

On-Line Transaction Processing (OLTP) systems. OLTP systems are designed to 

perform repetitive, structured tasks where detailed records are updated (e.g., order 

entry, account updates following a bank transaction). The emphasis in these systems 

is on maximizing transaction throughput and maintaining consistency. Typically 

OLTP systems are on the order of hundreds of megabytes to gigabytes in size.

In contrast to transactional database systems, data warehouses are designed for 

decision support purposes and contain long periods of historical data. For this reason, 

data warehouses tend to be much larger than transactional databases, often by orders 

of magnitude. I t  is quite possible for a data warehouse to be hundreds of gigabytes 

to terabytes in size [28]. In this environment, aggregated and summarized data are

14
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much, more important than detailed records. The emphasis in data warehousing is on 

query processing and response times rather than transaction processing. Queries tend 

to be complex and ad-hoc, often requiring computationally expensive operations such 

as joins and aggregation. Further complicating this situation is the fact that such 

queries must be performed on tables having potentially millions of records. Moreover, 

the results have to be delivered interactively to the business analyst using the system.

From this brief overview, it  is clear that data warehousing environments differ 

substantially from transactional or OLTP database systems. We now provide a more 

detailed discussion of data warehousing. We begin by discussing the architecture of 

a data warehousing system. This is followed by a discussion of data models for data 

warehousing/O LAP.

2.1.1 Data Warehousing Architecture

Figure 1 shows a typical data warehousing architecture.

Externa!
Sources

0 0
Operational
Databases

Data Sources

Monitoring &  Administration

Metadata
Repository

Transform

Refresh

OLAP
Servers

AnalysisData Warehouse

Query/RepottingServe

Data Mining

0 0 0 Tools

Dad Marts

Figure 1: Data Warehousing Architecture
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As the figure shows, the architecture includes tools for extracting data from mul

tiple operational databases and external sources, for cleaning, transforming and inte

grating this data, for loading data into the warehouse, and for periodically refreshing 

the warehouse to reflect updates at the sources and to purge data from the warehouse 

(perhaps onto slower archival storage). In addition to the data warehouse, there may 

be several departmental data marts. Data in the warehouse and data marts is stored 

and managed by one or more warehouse servers, which present multidimensional views 

of data to a variety of front end tools, such as query tools, report writers, analysis 

tools, and data mining tools. Finally, there is a repository for storing and managing 

metadata, and tools for monitoring and administering the warehousing system.

We now discuss in more detail how the components o f this architecture work. 

The first step is to extract data from the data sources. The data sources can be 

operational databases or other persistent storage (e.g., file systems), and can be local 

to the enterprise or foreign. Data extraction from such foreign sources is typically 

implemented via gateways and standard interfaces (e.g., ODBC [89]).

The next step is to “clean” the data. This step is necessary because of the fact that 

large volumes of data are combined from m ultiple data sources, thereby increasing 

the probability of errors and anomalies in the data. Examples of such errors and 

anomalies include inconsistent field lengths, inconsistent descriptions, inconsistent 

value assignments, missing entries and violation of integrity constraints. There are 

three broad classes of data cleaning tools:

•  Data Migration Tools. This class of tools allows simple transformation rules to 

be specified. For instance, an example of such a transformation rule is “replace 

the string work phone number w ith daytime phone number’ .

•  Data Scrubbing Tools. This class of tools uses domain specific knowledge to 

clean the data. They often employ parsing and fuzzy matching techniques to
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accomplish, cleaning from multiple sources.

•  Data Auditing Tools. This class of tools make it possible to discover rules and 

relationships by scanning data, sim ilar to data mining tools. For example, such 

a tool may discover a suspicious pattern that a particular store location has 

never processed any refunds on an item.

Once the data has been extracted, cleaned, and transformed, the next step is 

to load it into the warehouse. Additional pre-processing may be done as part of 

this step, e.g., checking integrity constraints, sorting, aggregation, building indexes. 

Typically, batch load utilities are used for this purpose. Given the extremely large 

data volumes that must be loaded and the relatively small time window (usually at 

night) for loading, parallel loading techniques have been developed to speed up the 

loading process [13]. However, even using parallelism, a fu ll load may s till take too 

long. For this reason, most commercial u tilities use incremental loading to reduce the 

volume of data that has to be incorporated into the warehouse. W ith incremental 

loading, only the updated tuples are inserted.

Periodically, the warehouse must be refreshed to reflect updates to the source data. 

There are two main sets of issues to consider: when to refresh and how to refresh. 

Usually, the warehouse is refreshed periodically (e.g., daily or weekly). The refresh 

policy is set by the warehouse administrator depending on the user needs and traffic, 

and may be different for different sources. Refresh techniques may also depend on the 

characteristics of the source and the capabilities of the database servers. Extracting 

an entire source file or database is usually too expensive, but may be the only choice 

for legacy data sources. Most modern database systems provide replication servers 

that support incremental techniques for propagating updates from a primary database 

to one or more replicas. Such replication servers can be used to incrementally refresh 

a warehouse when the sources change. In addition to propagating changes to the
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base data in the warehouse, the derived data (i.e., materialized views) must also 

be updated. The problem of constructing logically correct updates for incrementally 

updating materialized views has been the subject of much research (e.g., [31,32,151]). 

We w ill discuss this area of research in more detail later in this section.

An important ongoing activity is metadata and warehouse management. Ware

houses typically contain multiple types of metadata. For instance, administrative 

metadata includes a ll the information necessary for setting up and using a warehouse 

(e.g., descriptions of source databases, warehouse schema definitions). Business meta

data includes business terms and definitions, ownership of the data, and charging 

policies. Operational metadata includes information that is collected during the op

eration of the warehouse, such as the lineage of migrated and tranformed data and 

usage statistics. In addition to metadata management, there is also ongoing general 

warehouse management. Warehouse management tools are used for monitoring a 

warehouse and reporting statistics (e.g., query execution times, exception reporting).

Having discussed the architecture of a data warehousing environment, we now 

turn our attention to data models for data warehousing/OLAP.

2.1.2 Data Models for OLAP

The differing requirements of OLTP and OLAP systems dictate different data models 

for each type of system. In this section, we discuss conceptual, logical, and physical 

data models for OLAP.

2.1.2.1 Conceptual Models

The entity-relationship (ER) model is commonly used to represent an OLTP appli

cation at the conceptual level. However, this model is not well suited to the rep

resentation and efficient analysis of multidimensional data [77]. For this reason, an
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alternative conceptual model is required for OLAP systems. The multidimensional 

data model or data cube is a popular model used to conceptualize the data in a data 

warehouse [28].

The data cube contains points or “cells” that are measures or values based on a 

set of dimensions. For example, consider a retail sales application where the dimen

sions of interest may include CUSTOMER, PRODUCT, LOCATION, and TIM E. I f  

the measure of interest in this application is sales amount, then a point represents 

the sales measure corresponding to the CUSTOMER, PRODUCT, LOCATION, and 

TIM E dimensions. In Figure 2, a data cube is provided which shows the PRODUCT, 

LOCATION, and TIME dimensions. A cell corresponds to the sales value for the 

corresponding PRODUCT, LOCATION, and TIM E. For example, the shaded cell 

corresponds to sales for PRODUCT ’P I’ in ‘Seattle’ for 1994. This representation 

is sim ilar to the data model used for statistical databases, where the dimensions are 

actually categories and the measures are summaries [125].

1996 

5

Boston Dallas Seattle

LOCATION

Figure 2: Data Cube for Sales Application

Dimensions often form a hierarchy. For instance, the TIM E dimension may form 

a day-month-year hierarchy and the LOCATION dimension may form a c ity -s ta te - 

reg ion  hierarchy. Dimensions allow different levels of granularity in the warehouse.
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For example, reg ion  corresponds to a high level of granularity whereas c ity  corre

sponds to a low level of granularity.

A number of data cube operations have been coined in the literature based on the 

multidimensional data model. These operations are described below:

S lic ing  refers to selecting the dimensions used to view the cube. Referring back to 

Figure 2, the dimensional view provided is PRODUCT by LOCATION w ith TIME 

in the background. W ith this view, for instance, an analyst may see all products 

for all locations for 1994. This view can easily be changed using the slice operation. 

For example, a slice operation can change the view to PRODUCT by TIM E with 

LOCATION in the background. W ith the resulting view, an analyst may then see all 

products for a ll years for Boston.

D icing  refers to selecting actual positions or values on a dimension. Selecting 

“Dallas” as the LOCATION is an example of dicing. Note that slice and dice together 

are (roughly) analogous to the relational algebra operators selection and projection, 

and have the effect of reducing the dimensionality of the cube.

R oll-up  refers to increasing the level of granularity along one or more dimensional 

hierarchies. For example, consider again the sales cube of Figure 2, where the LO

CATION dimension forms a c ity -s ta te -re g io n  hierarchy. A typical analyst in an 

OLAP environment may wish to see the tota l sales at the s ta te  level, or at an even 

higher level, such as the reg ion  level.

D rill-dow n  refers to decreasing the level of granularity and is the converse of roll

up. Drill-down is essential because an analyst often examines data first at an aggre

gated level and then selectively examines data in more detail. For example, suppose 

an analyst has tota l sales at the reg ion level, but would like to see the corresponding
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totals for each s ta te . In other words, the analyst would like to drill-down or move 

down the dimensional hierarchy. Again the analyst may desire even more detail and 

drill-down to the c ity  level.

P ivo t refers to aggregating using two or more grouping dimensions and producing 

a new multidimensional view of the data having an attribute for each grouping di

mension and an additional attribute for the aggregated measure [28]. This operation 

is commonly found in multidimensional spreadsheet applications. Consider a simple 

example using the sales cube in Figure 2 where the dimensions are PRODUCT, LO

CATION, and TIM E and the desired aggregate measure is total sales by LOCATION 

and TIM E. Hence, LOCATION and TIM E are the grouping dimensions. Assuming 

the data values displayed in Table 1, the result of such a pivot would be a new view of 

the cube having LOCATION and TIM E as dimensions, and to ta l sales as a measure. 

A pivoted view is often displayed in a cross-tab format, as shown in Table 2. A result 

of the pivot operation is that values in the original cube become column headers (e.g., 

1994) in the pivoted view.

Product Location Tim e
Sales

A m ount
PI Boston 1994 100
P2 Boston 1994 200
P2 Boston 1995 200
PI Dallas 1995 150
P2 Dallas 1995 150

Table 1: Sales Data for Pivot Example

Another distinctive feature of the conceptual model for OLAP is its stress on 

aggregation o f measures by one or more dimensions as one of the key operations (e.g., 

computing and ranking the total sales by each county). Another popular operation is
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Location 1994 1995
Boston 300 200
Dallas 0 300

Table 2: Result of Total Sales by LOCATION and TIM E Pivot

comparing two measures aggregated by the same dimensions. In addition, time is a 

dimension that is of particular significance to data warehouses (e.g., trend analysis).

2.1.2.2 Logical Models

Logical data models have been proposed to support the data manipulation operations 

required in data warehousing/OLAP environments. Although there have been several 

proposals, no standard logical data model exists. An influential paper in this field 

appeared in 1995, written by Gray et a!. [55]. In this paper, the authors propose 

the CUBE operator, which expands a relational table by computing the aggregations 

over a ll the possible subspaces created from the combinations of the attributes of 

such a relation. Since the appearance of this paper, a number o f data models for 

OLAP have been proposed. A ll o f the models proposed so far attempt to represent 

multi-dimensional databases, and are designed around the basic underlying construct 

of a data cube, containing dimensions, attributes and measures. These models be 

classified into two broad categories: (a) relational extensions, and (b) cube-oriented 

models.

• Relational Extensions. Relational extensions are based on the well known 

relational model [30]. In general, these models use relations to represent m ulti

dimensional constructs, such as dimensions. Work in this area includes [84, 62, 

511.

• Cube-Oriented Models. Cube-oriented models attempt to model m ulti

dimensional databases more naturally. This does not mean that they are far
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from the relational paradigm - in fact a ll o f them have mappings to it - but 

rather that their main entities are cubes and dimensions. Work in this area 

includes [4, 21, 143, 82, 137].

2.1.2.3 Physical Models

The underlying physical model supporting OLAP is centered around two major 

views. Whereas some vendors, especially vendors of traditional relational database 

management systems (RDBMS), advocate the Relational OLAP (ROLAP) architec

ture [90, 70], others support the Multidimensional OLAP (MOLAP) architecture [69]. 

The advantage of the MOLAP architecture is that it provides a direct multidimen

sional manipulation capability of the physical level of the data whereas the ROLAP 

architecture is just a multidimensional interface to relational data. On the other 

hand, the ROLAP architecture has two advantages: (a) it can be easily integrated 

into other existing relational information systems, and (b) relational data can often 

be stored more efficiently than multidimensional data.

In the ROLAP approach, the data is stored in a relational database using a special 

schema instead of a traditional relational design. The highly normalized form of 

data advocated by conventional design methodologies is inappropriate in an OLAP 

environment for performance reasons. A high degree of normalization entails a large 

number of joins, which greatly increases response times, especially given the size of 

most data warehouses. For this reason, a special schema known as the star schema (or 

its variants the snowflake and the constellation schema) is often used. A star schema 

usually consists of a single fact table and a dimension table for each dimension. The 

fact table contains foreign keys to each dimension table, along w ith the actual metric 

data (e.g., sales amount). An extended version of the star schema, the snowflake 

schema, is often used to represent the dimensional hierarchies in normalized form.
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A possible snowflake schema for the sales application is presented in  Figure 3. This 

figure displays the day-month-year and c ity -s ta te -re g io n  hierarchies as somewhat 

normalized.

Customer Location State

Sales Fact Table

Time Month
Product

Month
Year

State
Region

Location
City
State

Time
Day
Month

Customer
Customer_Name
Customer_Address

Product
Product_Name
Weight
Color

Customer

Product

Location

Time

Amount

Figure 3: Snowflake Schema for Sales Application

In the MOLAP architecture, data is stored in n-dimensional arrays. Systems fol

lowing this approach are referred to as multidimensional database systems (MDBMS). 

Each dimension of the array represents the respective dimension o f the cube. The 

contents of the array are the measure(s) of the cube. An MDBMS requires the 

precomputation o f a ll possible aggregations. Thus, they often perform better than 

traditional RDMBS [33]. However, they are typically more d ifficu lt to update and 

administer.

Having provided an overview of data warehousing/OLAP, we now turn our atten

tion to the work in this area that is most relevant to this dissertation. In particular, 

we review the work that has been done to improve query performance in data ware

houses.
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2.2 Efficient Query Processing in Data Warehouses

Given the characteristics of data warehousing/OLAP environments, it  is clear that 

the emphasis in OLAP environments is on efficient query processing. A number 

of “conventional" relational query processing approaches have been applied to or ex

tended for answering OLAP queries. Some of this work has concentrated on efficiently 

performing GROUP BY [24, 26, 52], aggregation [27, 57, 68, 65, 109, 148, 150], jo in  or 

range queries [67, 130, 141], or supporting incomplete query answers [22, 64, 145]. 

Several approaches have been proposed for supporting the SQL CUBE operator, in

cluding [3, 44, 57, 93, 116, 126].

The m ajority of the work in attempting to improve query performance in data 

warehouses can be classified into two broad categories: (a) precomputation strategies, 

and (b) ad-hoc strategies. We describe both areas of work in the sections that follow.

2.2.1 Precomputation Strategies

Precomputation strategies rely on summary tables or materialized views, i.e., derived 

tables that house precomputed or “ready-made” answers to queries [28]. This has 

been, by far, the most explored area in the context o f data warehouses [2, 31, 56, 59, 

60, 58, 63, 85, 92 ,107 ,108 ,151]. The basic premise underlying this work is that data 

warehouses can achieve faster response times by pre-aggregating (i.e., materializing) 

the answers to frequently asked queries. The main challenges facing researchers in this 

area include: (a) identifying the views to materialize, (b) exploiting the materialized 

views to answer queries, and (c) efficiently updating the materialized views during 

load and refresh.

The selection of views to materialize must take into account workload character

istics, the costs for incremental update, and upper bounds on storage requirements.
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Under simplifying assumptions, a greedy algorithm was shown to have good perfor

mance [63]. A recent work proposed a system referred to as DynaMat [79], which 

dynamically materializes information at multiple levels of granularity in order to 

match the workload, but also takes into account the maintenance restrictions for the 

warehouse, such as downtime to update the views and space availability. The prob

lem o f exploiting materialized views to answer queries has been addressed by query 

optim ization work, such as [25, 83]. Finally, efficiently updating materialized views 

is an area that has seen significant work (e.g., [93, 108, 80, 149]).

It  is recognized however, that the anticipatory approach used in precomputation 

strategies only works up to a point [28, 98], and a considerable fraction of the work

load in OLAP applications consists of ad-hoc queries which need to be computed on 

demand [10]. This has led to work on strategies for ad-hoc query processing, described 

next.

2.2.2 Ad-hoc Strategies

Ad-hoc strategies support ad-hoc querying of OLAP data by using fast access struc

tures on the base data. Database systems use indexes to improve efficiency of access 

to data. Various general purpose indexing techniques have been proposed and are 

utilized in OLTP systems, including hashing [118], B trees [29, 34], and multidimen

sional trees such as the R-tree [61], the K-D-B tree [115], the BV tree [49], and the 

X-tree [14]. There exists another class of multidimensional structures, namely grid 

files [95], that allows for very fast access to multidimensional data.

For data warehousing/OLAP systems, an influential paper by O’Neil and Quass [98] 

identified four index structures that have been shown to improve query processing
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performance for certain classes of queries in data warehousing environments: 5+- 

trees [34], bitmapped indexes [96, 99], bit-sliced indexes [98, 72], and projection in

dexes [98, 133]. These structures are further described below.

•  B+-trees . B+-trees [34] have been used extensively in OLTP systems. The 

B+-tree is a multi-level index structure, where the leaf level contains a list of 

pointers or row identifiers (RIDs) for each value in the indexed column. For 

example, consider the CUSTOMER table shown in Figure 4. The RID column 

shown in the figure represents pointers to the locations of the tuples on disk.

CustKey Name Age

n r i aa I
CK2 hh in
n n r r 21
nC4 tM in
rx s M* sn
r t f * fF in

Figure 4: Example Customer Table

A B+-tree index on the Age column is shown in Figure 5[aj. The leaf level of 

the index contains a lis t of pointers or RID list for each unique value in the Age 

column. B+-trees are used in most RDBMSs.

•  Bitmapped Indexes. Bitmapped indexes [96] are sim ilar to B+-trees , except 

that the leaf level contains pointers to bit vectors, rather than RID lists. A bit 

vector has the cardinality of the indexed column, and a b it is set if  the value in 

the table row matches the value in the index. Figure 5[b] shows a bitmapped 

index for the Age column. Bitmapped indexes are used in the Oracle family of 

database products (e.g., Oracle 8i,9i) [99, 101].

•  Projection Indexes. A projection index [98] is simply a copy of a column that 

is used as an index. Note that some implementations of projection indexes do
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[aI B» tree Index on Age

[b | Bitmapped Index on Age
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Figure 5: B+-tree and Bitmapped Indexes

not store a separate copy o f the indexed column. Projection indexes are used 

in the Sybase IQ [133] product.

•  Bit-sliced Indexes. A bit-sliced index [98] is a “bit-level”  projection index. In 

other words, a bit-sliced index is a bitwise vertical partition of a projection index. 

Bit-sliced indexes are suitable for numeric (fixed-point) or ordinal attributes. 

Bit-sliced indexes are used in the Informix [72] product.

There has been some additional work related to bitmapped indexing techniques. 

An efficient encoding scheme for bitmapped indexes is presented in [146], which at

tempts to reduce the size of bitmapped indexes. While this technique appears to 

be promising, there are s till many open issues, such as how to determine the proper 

encoding. In [23], a framework for the design and evaluation of bitmap indexing 

schemes is proposed.

More recently, there have been a few new index structures proposed specifically for
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data warehousing/OLAP. The Cubetree [116], a collection of packed R-trees [61,117], 

is a multidimensional indexing scheme for the OLAP data cube. The Y-tree [74] is a 

tree-based index for data warehouses based on the notion of bulk insertion, and thus, 

the emphasis is on allowing fast insertions. The DC-tree [47] is a multidimensional 

index sim ilar to the X-tree [14], and the emphasis of this work is also on efficiently 

updating the index.

The index structures described so far map column values to their containing rows 

in a single table. There exists a class of index structures known as jo in  indexes [139], 

which typically associate column values and rows of two tables. In this way, the join 

index represents the fu lly precomputed jo in . Based on this idea, [97] introduced the 

bitmapped jo in index to improve the performance of jo in queries in data warehouses. 

The bitmapped jo in index is sim ilar to the bitmapped index, except that it  stores 

pointers to the referenced table rows rather than data values. Bitmapped jo in indexes 

are used in certain commercially available products, such as Inform ix [72]. We w ill 

discuss this structure in greater detail in a later chapter.

Having discussed the work that is relevant to this dissertation, the next several 

chapters w ill focus on the design of a scalable data warehousing solution approach. 

In particular, the next chapter w ill present a novel physical design paradigm for data 

warehouses, based on a suite of structures referred to as Datalndexes. Datalndexes 

combine and extend, in an effective way, ideas embedded in other well-known database 

structuring techniques, specifically vertical partitioning and transposed files [125], as 

well as indexing techniques, specifically projection indexes [98] and bit-mapped jo in 

indexes [97].
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Chapter 3

Physical Data Index Design: The
Datalndex

This chapter presents a novel physical design paradigm for data warehouses which is 

based on a suite of structures referred to as Datalndexes. The Datalndex structures 

are first presented, followed by a set of star-join algorithms which are based on these 

structures.

3.1 Motivation behind Datalndexes

In Chapter 2, we described several index structures, such as B trees and bitmapped 

indexes . These index structures all have one common characteristic: they each 

prescribe a separate set of indices or access structures in addition to the base data. 

Given the large size of data warehouses, storage is a non-trivial cost, and so is the 

additional storage requirement due to the index structures. This is especially true 

given that data and storage maintenance costs are often up to seven times as high 

per year as the original purchase cost [128]. Hence, a terabyte-sized system, w ith an 

in itia l media cost of $100,000, could cost an additional $700,000 for every year it  is 

operational. This cost is certainly non-trivial. Indexes, obviously, add to this cost and 

hence it is essential to minimize these additional costs. Unfortunately, as we w ill soon 

show, even the simplest index structure used today incurs substantial increases in total 

storage requirements, both in absolute and percentage terms. This, in turn, translates
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into higher media and maintenance costs. More im portantly though, intu ition dictates 

that an increased overall database size should result in  lower performance. This 

prompts us to ask the following question: “ is it  possible to reduce storage requirements, 

without sacrificing the efficiency obtained from indexing?'’

In this chapter, we answer the above question in the affirmative by proposing 

Datalndexes as a novel paradigm for storing the base data as well as serving as access 

structures to this data in warehouses. Because Datalndexes are both storage and 

access structures, substantial space savings are realized.

Thus, Datalndexes are motivated by the desire to reduce the additional storage 

costs due to index structures. To illustrate these costs we refer to the star schema [76J 

presented in Figure 6, which was derived from the TPC-D benchmark database [138] 

w ith a scale fa c to r1 of 1. This schema models the activities of a world-wide wholesale 

supplier over a period of 7 years, and w ill be used as a running example throughout 

this chapter. The central fact table is the SALES table, and the dimensions of the data 

are captured through the PART, SUPPLIER, CUSTOMER and TIME tables. Each dimension 

table has a primary key. The fact table is associated, through foreign-key reference, 

to the four dimension tables. Mote that some applications do not enforce referential 

integrity between the fact and dimension tables. However, we assume throughout the 

chapter that referential integrity is strictly enforced in all star schemas.

We first compute the storage requirements for the data, based on a conventional 

relational implementation, where the five tables would be represented as a series of 

records partitioned over a set of data blocks. To sim plify our analysis, we assume that 

each record is small enough to fit w ithin a data block. Given the usually large sizes 

(>  8 KB) o f warehouse data blocks, this assumption is very realistic. We also assume

l In the TPC-D benchmark, the scale factor is used to define the size of the database. In TPC-D, 
a scale factor of 1 corresponds to a database size of approximately I  GB, the minimum required size 
for a test database.
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Figure 6: A Sample Warehouse Star Schema

that each block contains some header information (e.g., version number, pointers to 

other blocks, etc.) which makes its effective size, B, smaller than its actual size, Bact. 

Given a particular table, T, w ith a record width w(T) and cardinality \T\, one can 

compute the number o f records that fit in a data block, i.e., the blocking factor for

JZL
P {T )

T, as p(T) — . In turn, we determine the size of the table to be Bact x

Let us further assume that the implementation platform uses a block size (Bact) of 

8192 bytes and an effective block size (B ) of 8000 bytes. From this we compute the

size of each table as shown in Table 3.

Table Table Size (bytes)
SALES 805,773,312
PART 34,136,064
SUPPLIER 2,564,096
CUSTOMER 42,377,216
TIME 73,728
all tables 884,924,416

Table 3: Table Sizes For Example Star Schema

We next compute the tota l storage requirements of the sample database based 

on the exact expressions for the size of the various index types derived in [144]. 

We have selected four popular index structures for data warehousing : B-trees [34],

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

bitmapped indexes [96, 99], bit-sliced indexes [98, 72], and projection indexes [98,133]. 

It is assumed that only the PartKey, SuppKey, CustKey, ShipDate, CommitDate and 

R eceiptD ate columns of the SALES table are indexed. Table 4 summarizes the stor

age requirements of each indexing scheme for the sample database2. Table 4 indicates

Indexed Col
um n

B +-tree Bitm apped P rojection B it-sliced

PartKey 1,675,288,576 1,640,816,640 24,576,000 24,649,728
SuppKey 118,800,384 82,780,160 24,576,000 24,649,728
CustKey 1,265,680,384 1,230,807,040 24,576,000 24,649,728
ShipDate or 
ConunitDate or 
ReceiptDate

36,896,768 21,733,376 12,288,000 12,324,960

total 3,170,459,648 3,019,603,969 110.592,000 110,936,064

Table 4: Indexing Costs for Example Star Schema

that the the indexing overhead for projection indexes is the least; the other access 

structures yield higher storage overheads. But even projection indexes incur a more 

than 12.5% increase in size of the indexed database over the unindexed database, 

assuming the index structures are stored in addition to the data. (Some implemen

tations of projection indexes, such as Sybase IQ [133], do not store both the index 

and data.) We also emphasize that projection indexes are not very effective for many 

OLAP queries. While they may perform well for simple queries involving a single ta

ble (e.g., restrictions, counting), they do not offer any improvement over conventional 

pairwise jo in  techniques [54]. Typically, additional indexes are required along with 

projection indexes to improve jo in  performance, incurring additional overhead.

Clearly, there is a need to minimize the additional overhead incurred by index 

structures. This is the motivation behind Datalndexes, introduced next.

2Note that the sizes of both the standard and bitmapped B-trees depend on the distribution of 
data values. The numbers presented in table 4 correspond to a perfectly uniform distribution of 
values.
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3.2 The Datalndex

In this section, we propose the Datalndex, which is a storage structure that serves 

both as an index as well as data. Specifically, we examine two types of Datalndexes, 

both based on the same basic idea of vertical partitioning. We refer to these as 

Basic Datalndexes and Join Datalndexes. We then compare Dataindexes to existing 

indexing approaches and then discuss physical database design based on Datalndexes.

3.2.1 Basic Datalndex (BDI)

A Datalndex is simply a vertical partition of a relational table. In this sort of parti

tioning, the columns being indexed are removed from the original table, and stored 

separately, w ith each entry being in the same ordinal position as its corresponding 

base record. The isolated partitions can then be used for fast access to data in the 

table. We call this partition a Basic Datalndex (BDI). A graphical representation of 

this structure is shown in figure 7.

Conventional
Relational
Representation

Discount Tax RetFlag Status

dt t l rl st

d2 a r2 s2

d3 t3 r3 s3

Basic
Datalndex
Representation

Discount Tax Status

dt tl si

d2 t2 s2

d3 t3 s3

RetFlag

r l

a

Basic Datalndex on 
Discount. Tax. Status

<b)

Basic Datalndex 
on RetFlag

Figure 7: The Basic Datalndex

In this figure, we show the actual storage configurations of the two cases: a base 

table (Fig. 7a) and the corresponding BDIs (Fig. 7b). The base table consists of the 

attributes Discount, Tax, RetFlag, Status, and two BDIs are constructed; one on the 

RetFlag column, and the other on the Discount, Tax and Status columns.
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As indicated by the dotted lines joining records from the two BDIs, the order of 

the records in the base table is conserved in both Datalndexes. This allows for an 

easy mapping between entries in the two BDIs. This mapping relies on the fact that, 

for a given BDI, there exists a fixed number of “slots” for holding records in each 

data block. Denoting by w ( j3 )  the width of a record of BDI /3, the number of slots 

per page in the BDI is given by p(/3) =  .

Based on this value, one can simply associate the elements o f a record in the 

two BDIs through a simple arithmetic mapping. Assume for instance that we need 

to access the record in the base table corresponding to some RetFlag value. This 

translates to associating the corresponding RetFlag BDI record r w ith its matching 

record in the other BDI. Denoting the BDI on RetFlag by /3 r  and the BDI on Discount, 

Tax, and Status by /?dts, we first compute the RID of record r in i.e., we determine 

that r is located in the (6fi)th block of 3r, at slot number s r . This can be done by 

simply keeping track of the number of data blocks loaded during the scan operation 

and seeing the position of the matching record w ithin its data block. The ordinal 

position, ft, of this record in the base table is simply given by f t  =  6/j x p(R) -f s r . 

From this number, we can determine the RID of the corresponding entry in the other 

BDI ( P d t s ) -  This RID is characterized by bars, the ordinal number o f the 3 Dt s  data 

block in which the record is located, and S q t s , the slot in block bors corresponding 

to record r. This RID can be expressed as bDrs  =  > and the slot number as

S r  =  ft mod p(R).

It is the ordinal mapping that makes this basic approach more efficient than 

existing vertical partitioning methods such as the Decomposition Storage Model 

(DSM) [36, 75,140]. Indeed, DSM utilizes surrogate keys to map individual attributes 

together, hence requiring a surrogate key to be associated w ith each attribute of each 

record in the database.

The resulting database size is essentially the same as the size o f the raw data
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in the original database configuration. However, we can now utilize the separate 

dimensional columns of the partitioned fact table as both elements of and indexes 

onto that table. Through this simple technique, we can store the data and index for 

the same storage cost as for the data alone. Hence, in terms of storage, the indexing 

is free.

Turning to our running example, we can divide the SALES table in Fig. 6, into five 

smaller tables, as shown in Fig. 8. The new schema is then composed of 5 vertical

F w t l t f  « t f t M
* t M  33 Byt*«
<*mr i i  e y rt*

*.3 fry 't* 
ry»*  ; s  »y '* *
l ; i *  « fry '* *
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oy* • •
*n«** fryrfrfr

» # r * *
: :  ey**«

. J fry*.**
i i *  fry '**

> * n t t t y  
U tP

Figure 8: Example Warehouse Schema w ith Datalndex

partitions: one for each of the SuppKey, PartKey, and CustKey dimensional attributes, 

one for the combination of ShipDate, CommitDate, and ReceiptDate dimensional 

attributes and one for the remaining columns from the original SALES table. A record 

in the original SALES table is now partitioned into 5 individual records, one in each 

of the resulting tables. Any such record can easily be re-built from these, since its 

component rows in the 5 resulting tables all share the same ordinal position. In the 

example, each of the 5 new tables is a Datalndex.

We note that a potential problem arises in the presence of variable-length at

tributes (e.g., those of type VARCHAR). In such cases, the number of records can vary 

from one page to the next. To solve this problem, one can define a maximum number 

of records per page, as is done in the model 204 database system [96}. In this case,
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a few ordinal position numbers (Q) may not actually correspond to actual records. 

Alternatively, one can “encode” each unique value to a fixed length surrogate. To 

sim plify our analysis, in this paper we thus assume that field lengths are fixed with 

no loss of generality.

3.2.2 Join Datalndex (JDI)

In decision support databases, a large portion of the workload consists of queries 

that operate on multiple tables. Many queries on the star schema of Fig. 6 would 

access one or more dimension tables and the central SALES table. For instance, a 

marketing analyst might want to identify the part type most often purchased by dif

ferent customer groups identified by their nation and market segment. The PART, 

CUSTOMER and SALES table must be joined to answer this query. Access methods that 

efficiently support jo in  operations thus become crucial in decision support environ

ments [97,110]. The idea of a BDI presented in the previous section can very easily 

be extended to support such operations. Consider for instance, an analyst who is 

interested in possible trends or seasonalities in discounts offered to customers. This 

analysis would be based on the following query:

SELECT TIME.Year, TIME.Month, average(SALES.Discount)

FROM TIME, SALES 

WHERE TIME.TimeKey = SALES.ShipDate 

GROUP BY TIME.Year, TIME.Month

Using the conventional relational approach, the association between the two ta

bles TIME and SALES in Fig. 6 is implemented through the primary key/foreign key 

relationship linking the columns ShipDate and TimeKey. To perform a jo in opera

tion on these two tables, the two columns must be accessed to determine the records 

that are jo in  candidates. There exist relatively fast algorithms (e.g., merge and hash
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joins) for evaluating joins. However, approaches that use pointers to the underlying 

data, instead o f the actual records, tend to give a better performance than other join 

strategies [54]. Thus, if  a Datalndex relied on pointers to records to both store and 

index the underlying data, it  would perhaps have a good jo in  performance.

Indeed, one can significantly reduce the number o f data blocks to be accessed while 

processing a jo in  by storing the RIDs of the matching records in the corresponding 

dimension table -  instead of the corresponding key values -  in a BDI for a foreign 

key column. This structure is a Join Datalndex (JDI). The JDI on SALES. ShipDate 

would then consist of a list of RIDs on the TIME table. Such a JD I is shown in Fig. 9. 

As before, we show both the conventional relational and our proposed representations. 

In the conventional approach, we show referential integrity links between the SALES 

and TIME tables as dashed arrows. For our proposed approach, we use solid arrows to 

show the rows to which different RIDs point and dotted lines to show that the order 

of the records in the JDI and the SALES BDI is preserved from the base table.
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Figure 9: The Join Datalndex

As can be seen in this figure, instead of storing the data corresponding to the 

ShipDate column, the JD I provides a direct mapping between individual tuples of 

the SALES and TIME tables. The jo in  required to answer the above query can thus 

be performed in a single scan of the JDI (more details in section 3.3). This property
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of JDIs is indeed attractive, since the size of this index is, o f course, proportional to 

the number of tuples in the table from which it was derived. In our example schema, 

for instance, the JDI on ShipDate contains 6 m illion entries. A jo in  operation could 

thus be performed by examining each one of these entries in turn. This approach 

should be significantly faster than w ith conventional jo in  algorithms, which typically 

perform joins between two or more tables in a pairwise fashion. Such algorithms 

include nested-loop joins, merge joins [16], hash-joins [17], or any derivative of these 

techniques [78,123] (see [54] for a survey). In fact, the exact number of block accesses 

needed to scan a JDI is simply the number of data blocks occupied by this structure. 

This is given by , where r  is the size of a RID (6 bytes). This results in
p(r )

=  4502 block accesses.

However, a JD I does not contain any data values. It might thus make the evalu

ation of queries where these values are needed more difficu lt. For instance, consider

6.000.000

T¥T

the following query: .

SELECT ShipDate FROM SALES

I f  the ShipDate column is stored as a JDI, this query requires access to both the 

SALES and TIME tables, even though the latter one is not explicitly specified. We can 

thus compute the number of block accesses necessary to evaluate the above query as 

4502+ j ~ =  4511. This figure is somewhat larger than would be required w ith a 

BDI. W ith a BDI, evaluating the above query would require only |"p(̂ ^ a te) =  

block accesses.

However, this would not always be the case: i f  the foreign table is small and the 

w idth of the indexed column is large, then scanning it  to obtain data values w ill be 

more efficient than actually scanning a corresponding BDI. For instance, consider the 

(somewhat unlikely) case where a TimeKey value is 8-bytes wide (i.e., u; (TimeKey) =  

8). Evaluating the above query w ith a JD I would require 4502+ |,™ me j j  =4513 block
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ISAIESl
p(TimeKey) =  6000accesses, where p(TIME) is uow , while a BDI would require 

I/O  operations, where p(TimeKey) is now’ |/p p ]. There would thus appear to be 

situations where a JDI is, in fact, preferable to a BDI even when no jo in  is explicitly 

involved3. Hence, even though a JDI is useful for a column storing foreign keys, it  is 

also useful when the column is wide and the number of distinct values in the column 

is small. In  this case, it  is preferable to realize the column as a JD I w ith the addition 

of another (small) lookup column storing the distinct values in the original columns. 

When it pays to do this is precisely characterized in section 4.2.1.5.

In Sections 4.2.1.1 and 4.2.1.5 we perform an analysis of the performance of the 

different indexing schemes in order to characterize exactly when a particular indexing 

scheme is to be preferred. Now we provide a qualitative summary o f the features 

embedded in Datalndexes.

3.2.3 Comparison of BDIs and JDIs with existing Indexing 

Approaches

The Basic Datalndex is closely related to the idea of the Projection Index. A pro

jection index is simply a m irror image of the column being indexed. When indexing 

columns of the fact table, storing both the index and the corresponding column in 

the fact table results in a duplication of data. In such situations, it  is advisable to 

only store the index if  original table records can be reconstructed easily from the

index itself. This is the starting point o f the proposed Datalndex scheme and is how

3Interestingly, we can significantly reduce the cost of accessing the TIME table in this sort of 
query by storing its primary key column (i.e., TImeKey) as a BDI. In this case, the number of I/Os 
required to evaluate the above query with a JDI is equivalent to the number of blocks of both the 
JDI on SALES.ShipDate and the BDI on TimeKey. As it turns out, the TIME table is so small that 
only 3 blocks are required to store the BDI on TimeKey. Hence, in this particular example, the total 
number of block accesses required to evaluate the above query is only 4505, which is again smellier 
than would be required with a regular BDI (whose size, in this case, was computed above to be 6000 
blocks).
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Sybase IQ stores data [50, 98]. Furthermore, w ith Datalndexes, each BDI of a table 

is stored separately -  w ith ordinal positon based mapping providing more efficient 

access to individual record fields compared to other vertical partitioning based meth

ods. Because BDIs are stored separately, only columns of interest need to be loaded 

in memory when joins are performed. Another attractive aspect of BDIs, and a point 

of departure from pure projection indexes, is that each BDI can contain any number 

of columns from the original table, unlike projection indexes which are restricted to 

single columns. Finally, as mentioned previously in Section 3.1, projection indexes do 

not improve jo in performance. We introduce the notion of Join Datalndexes (JDI) 

for this purpose.

O’Neil and Graefe [97] briefly introduced the idea of a bitmapped jo in  index for 

efficiently supporting muiti-table joins. JDIs capitalize on this idea in the context 

of the Basic Datalndex. A bitmapped join index (BJI) associates related rows from 

two tables [97], as follows. Consider two tables, 7\ and To, related by a one-to-many 

relationship (i.e., one record of 7\ is referenced by many records of T2). A BJI from 

Ti to T2  can be seen as a bitmapped index that uses RIDs of Ti instead of search- 

key values to index the records of T2 . Using a sim ilar basic philosophy, a JDI stores 

the RIDs o f the matching records in the corresponding dimension table instead of 

the corresponding key values. There are however, two important differences between 

JDIs and BJIs implemented in commercial systems:

1. Commercial implementations of BJI (such as in INFORMIX) are tree structured 

and exist as separate index structures. JDIs are flat structures and do not exist 

as auxiliary index structures. Rather, JDIs are a representation of the base data 

itself.

2. As we saw, JDIs are useful even when no joins are performed, specifically, when a 

column stores foreign keys, It is useful when the column is wide and the number

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

of distinct values in the column is small. This implies that w ith Datalndexes, 

the amount o f storage required may even be smaller than the storage required 

fo r the base tables.

We discussed above how Datalndexes are different from the indexes proposed for 

warehouses so far. In  this context we must also mention that the way we use these 

structures is also radically different from how current structures are employed. More 

specifically, we design a number of query processing algorithms that use Datalndexes 

in novel ways to deliver much improved performances of star-join queries in a large 

number of cases.

In summary, Datalndexes take the best aspects of vertical partitioning, projection 

indexes, and Bitmapped Join Indexes and integrates as well as extends them in (what 

we w ill show to be) an effective manner.

Before we conclude this section, it  is important to point out that a number of 

variant indexes are supported in commercial products such as Sybase IQ [133], Oracle 

8 [99], Inform ix Universal Server [72], and Red Brick Warehouse [110]. In addition to 

projection indexes[98] and bitmapped jo in indexes [97] mentioned already, such index 

structures include bitmapped indexes [96], bit-sliced indexes[98]. An analysis of three 

index structures along w ith B+-trees is presented in [98], which indicates that these 

four structures are particularly appropriate for warehousing/OLAP environments. In 

Section 4.2, we present the results of extensive analysis of the previously proposed 

index structures along w ith Datalndexes.

3.2.4 The Datalndex Physical Design Strategy

Having introduced the two types of Datalndexes, we now briefly describe a physical 

design strategy based on these indexing structures. In general, we propose that a JDI 

be established for each foreign column in the fact table, and single-column BDIs be
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established for all other fact table columns and for all dimension table columns. Thus 

every column in a given star schema is represented as either a single-column BDI or 

as a JDI.

To illustrate, consider again the star schema of Figure 6. The foreign columns in 

the SALES fact table are PartKey, SuppKey, CustKey, ShipDate, CommitDate, and 

R eceiptD ate. I f  we let j k denote a JDI on attribute A  in the SALES fact table, then our 

physical design strategy assumes the following JDIs are defined: jp«rtKey correspond

ing to the PART dimension table, jsUpPKay corresponding to the SUPPLIER dimension 

table, jcustKey corresponding to the CUSTOMER dimension table, jshipDate, JcomitDate, and 

jReceiptoate a ll corresponding to the TIME dimension table. The remaining columns in 

the fact table would be stored as BDIs. For instance, single-column BDIs would be de

fined for SALES.Quantity, SALES.ExtPrice, and SALES.Discount. Likewise, single

column BDIs would be defined for all dimension table columns. These would include, 

for instance, TIME.TimeKey, TIME.Alpha, TIME.Year, TIME.Month, TIME.Week, and 

TIME.Day for the TIME dimension table. The physical design strategy we have de

scribed w ill be assumed throughout this paper.

Having described the Datalndex structures, we now proceed to describe a set of 

star-join algorithms which are based on the Datalndex structures.

3.3 Fast Star Join Algorithms Based on Dataln

dexes

A common operation in  OLAP applications is the star-join query. In a star-join, the 

fact table is joined w ith a set o f dimension tables. Due to the large size o f most data 

warehouses, a star-join is typically an extremely expensive operation. As mentioned 

previously, response time is critical in  OLAP applications. Therefore, it  is imperative
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to have algorithms that can perform star-join queries very quickly. Such algorithms 

must ensure that the appropriate access structures are utilized. In this section, we 

present efficient algorithms for performing star-join operations w ith Datalndexes.

A typical OLAP query is of the form

SELECT column list FROM F , DVl .. . ,  Dm WHERE P* AND

where F  is the central fact table, are the m dimensional tables partici

pating in the jo in , Pa is a set of selection predicates (i.e., each individual predicate 

only concerns one table), and Px  is a set of join predicates (i.e., each predicate is of 

the form F..4L =  D ,.A2). To illustrate, consider the following query, based on our 

example from section 3.2, which lists the prices for sales made locally by suppliers in 

the United States:

SELECT U.Name, S .E rtPrice
FROM SALES S, TIME T, CUSTOMER C, SUPPLIER U
WHERE T.Year BETWEEN 1996 AND 1998 AND U.Nation=’United S ta te s ’ AND 
C.Nation=’United S ta te s ’
AND S.ShipDate = T.TimeKey AND S.CustKey = C.CustKey AND S.SuppKey =
U.SuppKey

In this query, the selection predicates (i.e., Pff) are “T.Year BETWEEN 1996 AND 1998 

AND U .N ation= ‘U nited  S t a t e s ’ AND C .N ation=cU nited  S t a t e s ’”; the joining pred

icates (Pot,) on the other hand are “S . ShipDate = T. TimeKey AND S.CustKey=C.CustKey 

AND S.SuppKey = U.SuppKey” . We w ill utilize this query example through the re

mainder of our discussion.

Before presenting the algorithms, we first briefly describe the notion of a rowset, 

an important underlying concept used throughout this analysis. A rowset is simply a 

representation of selected tuples from a table. Evaluation of a star-join query consists 

o f two phases: creating access structures to identify which tuples are to be retrieved 

to answer the query, and retrieving the actual data for the selected tuples. A rowset is
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the access structure used in the first phase. Two approaches to representing a rowset 

would be to represent it as a lis t of row identifiers (RIDs) or a b it vector [98]. In a 

R ID-list representation, a rowset can be thought of as a list structure containing a set 

of RIDs for selected tuples, and so the rowset cardinality is the number of selected 

tuples. In a b it vector representation, a rowset is a vector of bits (having cardinality 

of the table itself), where bits are set only for selected tuples.

The size o f a rowset R, in either form, can easily be computed. For an RID-list 

representation, the size of the rowset is governed by the number o f rows in the set, 

|I?|. In this case, the minimum size of the rowset representation is r  x \R\, where r 

is the size of an RID. For a b it vector representation, the size of a rowset is governed 

by the number of records present in the table. It is given by | " ^ j ss where we 

divide by 8 to convert this value from bytes to bits. Thus, from the point of view 

of storage requirements, an R ID-list representation is better than a b it vector if  the 

following condition holds.

r  x \R\ < H  ®  <  i -  (1)
1 1 8 |T| 8r v '

In other words, a R ID -list is only smaller when the selectivity (jpj-) o f the rowset is 

less than In the example presented in section 3.2, where r  is 6 bytes, a RID- 

list representation o f a rowset would only be better if  this rowset corresponds to 

less than 2% o f the number of records in the underlying table. In decision support 

environments, many queries access significant portions of the underlying database [28]. 

In addition, many operations on bitmaps are much faster than on RID lists [98]. For 

these reasons, in this research, we assume that the rowsets used in evaluating a 

selection predicate are implemented as b it vectors.

Mow we turn our attention to analyzing how a star-join query is evaluated in a 

data warehouse.
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Essentially, star-join query is evaluated in two phases: the range selection phase 

and the jo in  phase. In the range selection phase, the selection predicates (Pa) are 

applied individually to each table that participates in the jo in. This results in a set 

of rowsets that indicate which tuples from each table are candidates for inclusion in 

the jo in  result. In the join phase, the rowsets are used in conjunction w ith index 

structures to retrieve the data for tuples appearing in the jo in  result.

To illustrate this approach, consider again our sample query that was presented 

earlier in this section. The set of dimension tables participating in the join is V  =  

{TIME, CUSTOMER, SUPPLIER}, the set of dimension table columns that contribute to 

the join result is Cp =  {SUPPLIER.Name}, and the set of fact-table columns that 

appear in the result is Cp =  {E xtPrice}.

To answer this query, we would begin the range selection phase by first apply

ing the predicates T.Year BETWEEN 1996 AND 1998, U .N ation=’U nited S t a t e s ’ 

and C .N ation=’U nited  S t a t e s ’ to the corresponding dimension tables (i.e., TIME, 

CUSTOMER and SUPPLIER). These selections would result in a set of rowsets, 11. one for 

each of the dimension tables involved (i.e., 1Z =  { F t im e ; ^ customer.! - ^ s u p p l ie r } ) -  Since 

no predicates were applied on the fact table, F. the corresponding rowset, Rp, corre

sponds to a ll tuples of F .

Once the range selection phase completes, the jo in  phase would commence. We 

now discuss the execution of these two phases separately. Once we have completed 

describing the two phases, we w ill present our analysis which computes the costs of 

performing each phase.

3.3.1 The Range Selection Phase Using Datalndexes

In this phase, rowsets are computed based on the restriction (selection) criteria applied 

in the query under consideration. Performing this phase using BDIs and JDIs is quite
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simple.

To evaluate a selection using a BDI, it  is necessary to scan the entire BDI and 

evaluate the selection predicate on each value in the BDI. For example, to evaluate 

the predicate T.Year BETWEEN 1996 AND 1998, it would be necessary to scan the 

T.Year BDI and generate a rowset where a set b it corresponds to an ordinal position 

such that the record at this position in the BDI satisfies the predicate.

A JDI is fundamentally different from a BDI in that none o f the search-key values 

are present in the index. Rather, the RIDs corresponding to foreign records that 

hold these values are stored in the index. So, evaluating a predicate-based selection 

operation on a JDI cannot be done by only accessing the JDI. Rather, the foreign 

column is first scanned, and a rowset of all matching entries is generated and kept in 

memory. The JD I is then scanned and a second rowset is constructed by determining 

which entries in the JDI are present in  the first rowset.

For instance, consider the TPC-D schema shown in Figure 6. Assume a JDI exists 

on SALES .SuppKey and a BDI exists on SUPPLIER. Nat ion . To evaluate the predicate 

“SUPPLIER. N ation = 'U nited  S t a t e s ’ “ requires first scanning the SUPPLIER. Nat ion  

BDI and determining which values have ’U nited S ta te s ’ in the N ation field. A 

rowset (having cardinality equal to that of the SUPPLIER table) indicating which en

tries in the SUPPLIER table meet this condition is then created and kept in memory. 

Next the JD I on SALES.SuppKey is scanned and compared to the first rowset to deter

mine which entries in the SALES fact table meet the predicate condition. The result 

o f this comparison is a second rowset (having cardinality equal to that of the SALES 

table) indicating the requested SALES records. Having described the range selection 

phase, we now turn our attention to describing the join phase evaluation of a star-join 

query.
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3.3.2 The Join Phase

A star-join can be evaluated in a variety of ways using Datalndexes. We propose 

two such approaches. Each one should be used depending on the amount of available 

memory. We call the first approach Star-Join with Large memory (SJL). It  is the more 

efficient of the two in terms of response time, but may require significant amounts of 

memory in certain cases. The second one is somewhat less efficient but has negligible 

memory requirements. We refer to it as Star-Join with Small memory (SJS).

3.3.2.1 SJL algorithm

The basic idea behind SJL is to perform a star join w ith a single pass over each table 

participating in the join. Clearly the performance afforded by such an algorithm 

would be d ifficult to improve upon. The SJL algorithm is shown in Algorithm 1.

To illustrate this approach, consider again our sample query that was presented 

earlier in this section. The set of dimension tables participating in the join is V  =  

{TIME, CUSTOMER, SUPPLIER}, the set of dimension table columns that contribute to 

the jo in  result is Cp =  {SUPPLIER.Marne}, and the set of fact-table columns that 

appear in the result is CF =  {ExtPrice}.

Now assume that the range selection phase is complete for this query, using meth

ods outlined in section 3.3.1. The output of this phase is a set of rowsets, Tl, one for 

each of the dimension tables involved (i.e., 71  =  { J ? t im e :  R ossicker, - ^ s u p p l i e r } ) -  Since 

no predicates were applied on the fact table, F , the corresponding rowset, R F, corre

sponds to a ll tuples of F .

The SJL algorithm would then execute the jo in  phase, beginning by loading all 

blocks of the dimensional BDIs where it is known that some record of interest occurs 

that appear in the jo in result (i.e., all columns in Cp). This is done by steps 1 

through 4 in Alg. 1, by scanning rowset ^ su pp l ie r - The result o f this operation is
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A lg o rith m  1 SJL (Star Join w ith Large memory)
Note: Needs enough memory to hold all dimension BDIs used in the join result.
Input:

V: set of dimension tables involved in the join.
Cp: set of dimension table columns that contribute to the join result.
Cp: set of fact-table columns that contribute to the join result.
%: set of rowsets, one for each table in V and one for the fact table F (R =  
{/E i,. . .  /?|p|, /2 f}). These are computed through the range selection phase, before SJL 
starts. Note that i2i,.../E |p| are already loaded into memory, whereas Rp is not.

1: for each column c,- G Cp do 
2: for each row r  G Ri do
3: if the block of BDI on c,- where r  is located is not loaded then
4: Load this block into memory array aCi and pin in memory
a: for each row r  € Rp  do 
6: for each JDI j  on a table of V  do
7: if j{ r )  £ Rj  then
8: goto 5
9: for each Cf G Cp do

10: 5[q] * -a Ci(jCi(r))
11: for each Cj G Cp do
12: s [c j ]  * -  r [ c j ]
13: Output s.
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that the appropriate blocks of the SUPPLIER.Name BDI would be in memory, along 

w ith the three rowsets generated during predicate selection (i.e., Rum , ĉustomer! and 

• ^ s u p p l ie r ) -

After this, SJL would begin scanning the appropriate SALES JDIs to determine 

which SALES records should appear in the jo in result (steps 5-8). This would proceed 

as follows. For each record in the fact table, the JDIs linking F  to elements of V  

are examined (step 6). We w ill denote these JDIs as j ’t i h e , ./customer and . /s u p p l ie r , 

corresponding to the three elements of V. SJL uses these JDIs to “look up” matching 

entries in the corresponding rowsets (step 7). To illustrate, consider two successive 

fact-table rows, r i and r 2. SJL would first examine the entry corresponding to r t in 

J t im e  (step 6). This entry, noted JtimeO"^ is an RID onto the TIME dimension table 

and it  can thus be used to access the corresponding b it in Rum  through a simple 

array look-up (step 7). Assume that this b it is cleared (i.e., set to 0); SJL would 

then simply skip r i and examine the next record (step 8). This next record, r2, 

would undergo a sim ilar set of operations. First of all, the corresponding entry in 

J tim e  (step 6) (i.e., J tim e  (ri>)) would be checked against Rum  (step 7); assuming that 

r2 corresponds to a sales in the years 1996 to 1998, then the next JDI, i.e., j ’customer 

would be checked (step 6). I f  the corresponding b it in ^ customer is set to 1 (step 7), 

then the last JDI (i.e., j 's u p p l ie r )  would be checked as well (step 6). Assuming that 

the corresponding b it in i?suppiiER is also set to 1 (step 7), then this would indicate 

that r2 does indeed appear in the jo in  result.

Once a fact-table row r  has been identified as contributing to the jo in  result, SJL 

builds the corresponding jo in  record (steps 9-12) prior to output (step 13). To do 

this, the corresponding entry in the in-memory BDI for SUPPLIER.Name is accessed 

and used to construct the output record s (step 9-10). To access the correct entry, the 

RID of the SUPPLIER record referenced by r  is simply obtained from J s u p p l ie r  (step 

10). This RID is mapped to an ordinal position and used to access the in-memory
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BDI on SUPPLIER.Name. Since this BDI is represented as an array (asoppLiER.Kaoe)i 

this step simply consists of a lookup into the array, based on the ordinal position in 

SUPPLIER of jsnppr.Tpn(r) (step 10).

Finally, the attribute values corresponding to fact-table columns are loaded from 

disk to complete the output record (step 11-12). In our example, the only such column 

is ExtP rice. The appropriate page from the ExtPrice BDI would then simply be 

loaded from disk and the corresponding attribute (i.e., r[E xtP rice ]) would be used 

to finish constructing output record s (step 12).

3.3.2.2 The SJS algorithm

Recall that in SJL (steps 1-4 of Algorithm 1), the dimension table BD I’s for columns 

appearing in the join result are loaded and pinned in memory. Thus, SJL assumes 

that the memory is large enough to fit a ll relevant columns from dimension tables 

in memory. Clearly, in some cases, this assumption is not realistic. For instance, 

referring back to Figure 6, consider a database having a scale factor o f 100, which 

is approximately 86 GB in size. Typical OLAP queries w ill display dimensional 

attributes such as CUSTOMER.Name, a 25-byte field. A single BDI on CUSTOMER.Name 

would require 375 MB of memory, which exceeds the main memory o f many machines 

today. In Algorithm  2, we present the SJS algorithm for performing a star-join 

on a Datalndexed warehouse, when the combined size o f all relevant columns from 

dimension tables cannot fit in memory. Like SJL, the SJS algorithm assumes that all 

restrictions on participating tables have been computed and the results stored in a 

set of rowsets, % =  [ R i , . . . .  R\v\, R f }> w ith the dimensional rowsets { R i , . . . ,  

loaded into memory prior to the start of the algorithm. Thus, it  is assumed that 

enough memory exists to load a ll dimensional rowsets. However, it  is not assumed 

that sufficient memory exists to load a ll dimension table BDIs. Rather, the jo in  is
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performed oa smaller subsets of the dimensional BDIs by loading as many blocks of 

these BDIs as w ill fit into the available memory. Temporary structures and merge 

techniques are required to perform these operations. Clearly the amount of available 

memory plays a critical role in the performance of this algorithm, which we w ill 

analyze in more detail in a later section. For now, we describe the SJS algorithm in 

more detail.

A lg o rith m  2 SJS (Star Join w ith Small memory)
Note: Has negligible memory requirements.
Input: Same as in Algorithm 1.
1: for each JDI j  on a table of V  do 
2: for each row r  G Rp do
3: if  j( r )  £ Rj then
4: Rp <— R f — {r}  / *  turn corresponding b it o ff * /
3: for each JDI j t on a table t G V  do 
6: for each row r  G Rf do
7: write j t(r) to temporary JDI Jt,temp on disk
8: for each BDI bi on a column Cj G Co do
9: Create output BDI 6j(out) on disk

10: fc «- 1
11: while 3 unloaded blocks of bi do
12: Load as many blocks of 6* as possible into in-memory array a*
13: for each row r  in ĵ temp do
14: if  6j(r) G a* then
15: 6 ;(o u t )  i—  b{(r) / *  w rite matching entry to output BDI * /

16: At <— fc 1
17: for each row r  G R f  do
18: for each column q  G Co do
19: s[cj] < - 6 j(r)
20: for each column c3 G Cf do
21: s[cj] i— r[c3]
22: Output s

We describe the algorithm in four main phases. We refer to the first phase (steps 

1-4) as the fact table rowset (R f) restriction phase. This phase restricts the in itia l 

rowset on the fact table, Rp, so that it  only indicates records that w ill appear in the 

jo in result. This is done by accessing the JDIs of the fact table corresponding to all
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participating dimensional tables. This process is sim ilar to scanning the JDIs in the 

SJL algorithm (steps 5-7 o f Algorithm 1), except that Rp is updated. We refer to 

the second phase (steps 5-7) as the JD I restriction phase. This phase restricts the 

JDIs to those rows of the fact table that appear in the jo in  result. This is done by 

simply scanning the restricted fact table rowset created in the previous phase. The 

resulting restricted JDIs are stored in temporary structures on disk. These first two 

phases basically prepare the data for the actual join, which we describe in the next 

two phases.

We refer to the th ird phase (steps 8-16) as the output BDI creation phase. This 

phase constructs an output BDI for each dimension table column appearing in the join 

result (i.e., all columns in C?>). This is done by loading into memory as many blocks 

of the dimension table BDI as w ill fit; i.e., loading some fraction of the BDI. Then 

for this loaded portion of the BDI, the restricted JDI is scanned to find matching 

BDI entries, which are then written to the output BDI. Each value is w ritten to 

the output BDI in the order corresponding to the restricted JDI, so the output BDI 

w ill have the same cardinality as the restricted JDI. The JD I and output BDI are 

processed sequentially, one block at a time. This processing is repeated as many times 

as necessary to load a ll dimension table BDIs. The same processing is done for all 

columns in C®.

Referring back to our example query, recall that Cv =  {SUPPLIER.Name}. Suppose 

the total memory required for the entire SUPPLIER.Name BDI is 250 MB, yet only 

64 MB of memory is available. In other words, we assume here that 64 MB of 

memory is available after accounting for the memory already occupied by the JD I 

and output BDI blocks that are currently loaded for this phase. Clearly we cannot 

load a ll dimensional BDIs at once, but rather, can load up to 64 MB at a time. I f  

we assume an effective block size of 8 KB, then we can load 8,000 blocks o f this 

BDI at once (= (pg ]) ) , which is roughly one-fourth of the SUPPLIER.Name BDI
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H f l r w l ) ) -  ^ nce we ^ave 8,000 blocks of the SUPPLIER.Name BDI loaded, the 

JDI for the SUPPLIER dimension, / s u p p l ie r , is scanned for RIDs that point to one of 

the BDI entries in memory. Matching entries are then written to the output BDI. 

This process is repeated until all blocks for the BDI have been loaded, 4 times in 

our example. The result is the output BDI for SUPPLIER.Name, which contains the 

corresponding output values in fact table order based on the restricted JDI.

We refer to the fourth phase (steps 17-22) as the final output merge phase. This 

phase creates the final output by scanning Rp  and merging the dimension table 

output BDIs (created in the third phase) w ith the fact table output BDIs (i.e., all 

columns C?). In our example, for each record in Rp, the corresponding value from 

the output BDI for SUPPLIER.Name is obtained along w ith the corresponding value 

from the output BDI for ExtPrice. Note the sim plicity o f this phase since all output 

BDIs are in fact table order.

Having presented the Datalndex structures and star join algorithms based on 

these structures, we now turn our attention to analyzing the cost to perform common 

OLAP queries using these structures and algorithms.
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Chapter 4

Comparative Analyses of Star Join
Algorithms

In  this chapter, we present a set of cost analyses which compare the performance of 

the algorithms proposed in Chaper 3 to existing star jo in algorithms. We first describe 

the metric used in the cost analyses. We then present detailed cost expressions for our 

proposed algorithms as well as for existing star jo in  algorithms. Finally, based on these 

cost expressions, we present an analytical comparison of our proposed algorithms with 

a star jo in algorithm that is commonly used in practice.

4.1 Cost Analysis of Proposed Star Join Algorithms

In a relational system, a query is generally first translated from its original format 

(e.g., SQL) into some internal format (often an extension of Select-Project-Join in 

relational algebra) which is then used by the query optimizer to determine a query 

execution plan, i.e., a sequence of data and index accesses and manipulations. This 

plan is then executed as a series of disk accesses -  which load the relevant portions 

of the database to main memory -  interleaved w ith bursts of CPU activity, when 

the loaded data is operated upon. Mapping functions are required to determine 

the specific disk block that needs to be accessed and these depend on the index 

structure used. The mapping operations needed for Datalndexes are sim ilar to the 

ones used in other systems, which utilize bitmap vectors (in bitmapped indexes or
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for bitmapped rowsets). Depending on the system in use, the logical block numbers 

discussed in the previous section are translated into physical block IDs either by the 

operating system or by low-level routines of the storage manager of the DBMS itself. 

The logical block numbers allow the system to work as if  the files were allocated 

contiguous storage when in fact they are not. In all cases the mapping operations 

can be implemented through a few integer operations and are thus quite fast. In 

fact, in most cases, we believe that the delays associated w ith  these computations 

w ill be negligible compared to the much slower storage access times. This belief is 

strengthened by other studies [98, 66], which have shown that I/O  related costs (disk 

access plus I/O  related CPU costs) are several orders of magnitude more than other 

CPU costs relating to query processing. Based on these findings, in this research, we 

w ill focus on analyzing the index structure performance w ith respect to disk access. 

Specifically, we characterize the performance of a query as the number of data blocks, 

JV", that are accessed during the execution of that query.

Overall, the number o f block accesses necessary to perform a star-join, jV"sur, can 

be expressed in terms of the cost of creating all in itia l rowsets and that o f joining 

the corresponding rows together to compute the final result. More specifically, we 

define JVjiowsErto be the number of data block accesses required to construct a rowset 

corresponding to a particular selection predicate. We also define to be the 

number of block accesses required to jo in  these rowsets to form the final query result. 

Putting these two costs together gives the following expression for the cost (in terms 

of number of block accesses) to perform a star-join:

•A t̂ar =  ^  •A/rOWSET +  -A/jOIN (2)

where the summation of JVrowsetIs performed over all selection predicates. Following 

this model, we now present an analysis o f the cost of performing rowset constructions
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based on the Datalndexes and then present two separate analyses of the cost of 

performing the actual join based upon the two different algorithms outlined in the 

previous section.

First, we summarize in table 5 the notation used throughout this analysis. Note 

that some of the notation in this table has not yet been used.

Notation Description
B Effective Size, in bytes, of a data block
7T Size, in bytes, of a pointer to a data block
r Size, in bytes, of an RID
|T| Number of records present in table T
V Number of distinct values present in the column being indexed
ST Selectivity factor on table T  (0 < < 1)
C Distinctness factor of range selection (0 < c < 1)
Kange Number of distinct search-key values referenced by a particular range 

selection (i.e., number of all such ujt values present in the table such 
that ki <Vk < ko)- Note that Vranf!e =  cjjT |c

w(C) Width, in bytes, of a particular column C
ia(T) Width, in bytes, of a table T
K Number of search key values per node of B+-tree
P Order of B+-tree , i.e., P =  K  +  1
f Compression factor such that 0 < /  < 1 where /  =  1 indicates no 

compression
V Set of dimension tables involved in a join
Ct> Set of dimension table columns that contribute to the join result
Cf Set of fact-table columns that contribute to the join result
Ri Rowset corresponding to dimension i (i =  1,2 , . . . ,  V)
Rf Rowset corresponding to the fact table
n Set of rowsets, one for each table in V  and one for the fact table F 

{% =  { # ! , . . .  .R|£>|,- f tp})

M Number of blocks allocated to input BDI

Table 5: Notation used in Analyses
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4 . 1 . 1  Cost for Constructing Rowsets Using Datalndexes (.A/rowset)

We now examine the first component of query' cost, j V rqwset> for BDIs and JDIs. 

Most OLAP selection operations w ill consist of range predicates, i.e., having the form 

ki < C < k2, where Aq and ko are (possibly equal) constants and C  is the column 

being inspected. Our analysis can easily be extended to more complex predicates.

First, to evaluate a selection using a BDI, it  is necessary to scan the entire list and 

evaluate the selection predicate on each value in the list. Hence, the cost of evaluating 

a selection on a column C  indexed by a BDI is simply the number of block accesses 

required to scan the index:

A rowset(BDI) —
m x w(cy

B (3)

where |T| represents the number of records in the table, w[C) represents the width 

of the column being indexed, and B  is the effective size of a data block in bytes.

To sim plify the analysis, we drop the ceiling ([•]) function and approximate the 

cost of building a rowset using a BDI to be:

J W ( B D I)  »  |T| XBm(C) . (4)

Second, as mentioned previously, a JDI is fundamentally different from a BDI 

in that none of the search-key values are present in the index. Rather, the RIDs 

corresponding to foreign records that hold these values are stored in the index. So, 

evaluating a predicate-based selection operation on a JDI cannot be done by only 

accessing the JDI. Rather, the foreign column is first scanned, and a rowset of all 

matching entries is generated and kept in memory. The JD I is then scanned and a 

second rowset is constructed by determining which entries in the JD I are present in 

the first rowset.
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The cost to construct a rowset for the SALES fact table using this method yields 

the following expression, where the first term corresponds to scanning the BDI and 

the second term corresponds to scanning the JDI:

■A/rohset(JDI) —
V  w(C) 

B +
J T jr

B (5)

Here V  represents the number of distinct values present in the column being indexed. 

It is assumed that the foreign column is a primary key of the dimension table and 

is stored as a BDI. Thus the cardinality of the referenced BDI is V. Note that V  is 

usually much smaller than |T|. In the second term, r  represents the size of a RID in 

bytes. Applying the same simplifications as before results in the following expression 

for the cost to construct a rowset using a JDI:

,™ w T ® ( C )  +  m r  
MMWSET(JDI) ~  ---------^ ---------  (6)

4.1.2 Cost for Joining Tables (A /jo in)

In this section we examine the cost to perform a jo in using both the SJL algorithm, 

A j o in ( S J L ) .  and the SJS algorithm, A /j o in (S J S ) .  In this analysis we assume that 

disk fragmentation is neglible. Unlike transactional processing systems, in a data 

warehouse, the emphasis is on querying rather than updating. Updates in a data 

warehouse typically occur in bulk, so records w ill be packed. It is therefore reasonable 

to assume that the degree of fragmentation w ill be insignificant and so we assume 

packed records throughout this analysis.

4.1.2.1 Cost of the SJL Algorithm

It should be clear from the discussion in Section 3.3.2.1 that SJL performs a single 

scan of the central SALES fact table, and that only a lim ited number of columns is ever
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examined. During this scan, only pages that correspond to records in R f  are actually 

considered (step 5 of Algorithm 1), and often, only a subset of the corresponding JDI 

pages w ill need to be loaded and examined (steps 6-8 of Algorithm  1). Indeed, a 

query optimizer should determine the order in which these JDIs should be examined, 

so as to minimize the number of page accesses. A simple rule o f thumb for this type of 

optim ization would be to select the JD I whose corresponding rowset has the smallest 

selectivity. Finally, once a record is known to participate in the join, only a subset of 

the columns from the different tables is ever accessed (steps 9-12 of Algorithm 1).

This simple approach allows for very efficient star-join evaluation. Indeed, the 

cost of a query on a fact table F  and a set of dimension tables V  can be expressed 

as follows:

where jVp( BDI) represents the cost of retrieving all blocks containing relevant records 

from dimensional BDIs, JVf(JDI), the cost of scanning each of the relevant JDIs from 

the fact table, and j\ff(BDI), the cost of scanning all relevant records from fact table 

BDIs. We now derive expressions for each of these terms.

The cost to retrieve the relevant blocks for dimensional BDIs requires scanning 

the dimensional rowset for each dimension table column involved in the jo in  result. 

This cost can be expressed as follows:

where V  represents the set of dimension tables involved in the jo in, |D| represents the 

cardinality of the rowset for dimension table D, and Co represents the set of columns 

from a table D that appear in the jo in  result.

t fm n i  SJL) =M >(B D I) + A >(JD I) +A />( BDI)

D e v  c e c D
B (8)
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The cost to scan the relevant JDIs from the fact table is given by:

>|F|-
B (9)

Here r|F|
B represents the number of block accesses required for a particular JDI and 

\D\ the number of dimension tables participating in the jo in . In the worst case, all 

foreign colums satisfy the restriction conditions and so a ll \V\ JDIs must be examined.

Finally, the last part of the algorithm involves loading columns from the fact table 

to complete the output record. The cost to scan the relevant records from the fact 

table is given by:

BDI) =  rain U f \F\,
C€Cr  '

\F\ x w(C) 
B

(10)

Here <;f denotes the final selectivity on the fact table (i.e., the number of records in 

the jo in  is <tf|F | and 0 <  <  1). The cost of loading the fact table columns depends

on the selectivity. This cost w ill be the lesser o f the number of records in the jo in 

(i.e., the first term in (10) by random access), and the tota l number of blocks required 

for a ll relevant columns in F  (i.e., the second term in (10) by sequential scan of the 

entire index).

By inspection, we can thus establish that the dominant factor in these equations 

is \F\ x  |Z>|, which indicates that the worst-case performance of this algorithm w ill 

be 0 (|F | x  |D|) or simply 0 (|F |) since |D| is bounded by a small constant for a given 

star schema.

We note again that this efficient approach can only be utilized if  enough memory
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can be allocated to the query. This memory requirement is given by

Det> cecD
Mjqin(SJL) — 1 +  \V\ + \Cf \ +  ^ 2  ^ 2  ^  q  ^  + 1̂ 1 ^ 2

D£D

M
8 B • ( 11)

Here the first term corresponds to one block of memory for the fact table, the second 

term corresponds to \V\ blocks for the JDIs, and the th ird  term corresponds to \Cf \ 

blocks for the fact table BDIs. Thus we assume that the algorithm proceeds by 

accessing the fact table rowset, each JDI, and each fact table display column one 

block at a time. The fourth term corresponds to the memory requirements for the 

dimension table BDIs, and the last term corresponds to the memory requirements for 

the dimension table rowsets, both of which are loaded into memory for the duration 

of the algorithm.

From 11, we can conclude the following:

R esult 1 The memory requirements for the SJL algorithm are independent of the 

size o f the fact table.

This is an interesting result because it allows us to see that the SJL algorithm often 

does not require much memory, and that the memory requirements do not increase 

as the size o f the fact table increases.

To illustrate, consider again the star-join query from Section 3.3, which joins 

the SALES fact table w ith the TIME, CUSTOMER, and SUPPLIER dimension tables. Us

ing (11), it  is easily shown that a total of 52 blocks of memory are required to answer 

the query using SJL. While this is by no means a “monster’ query, it  is certainly re

spectable. Yet, on any given system, it  would only require about 416KB o f memory, 

regardless of the size of the fact table. This amount of memory is small enough as 

to be even available on low-end personal computers. In addition, the corresponding 

columns could be used concurrently by other queries, thereby reducing the effective
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memory requirements of each query. This can be done because SJL always loads the 

entire columns “as-is” , without pre-performing selections or reordering the data. It 

would thus appear that the memory requirements of SJL are indeed acceptable for 

many OLAP-type queries.

4.1.2.2 Cost of the SJS Algorithm

We now present the cost to perform a jo in  using the SJS approach. This cost is given 

by:

• /V j O I m ( S J S )  =  N " r f  +  A / j D I  +  A / o B D I  +  M ile r g e  ( 1 2 )

where U rf represents the cost of the Rp restriction phase, (steps 1-4 o f Algorithm 2), 

A/joirepresents the cost of the JDI restriction phase (steps 5-7), A/oemrepresents the 

cost of the output BDI creation phase (steps 8-16), and A4terge represents the cost of 

the final output merge phase (steps 17-22). The expressions for each o f these terms 

is given below. The cost to restrict Rp is given by:

M rf =  2 in
8 B

+  A/>(JDI) (13)

ILL
SB , the to ta l number ofwhere ^  is the size of Rp (in bits). D ividing by B  gives 

blocks required to store R f . Since the entire rowset must be loaded and written back 

to disk, the first term thus represents the cost both to load and write the rowset. The 

second term represents the cost to load the JDIs and is given by (9).

The cost to restrict the JDIs is given by:

in
8 B

+A />(JD I) +  |£>|A/'fi(JDI) (14)

where the first term represents the cost to load Rp  and the second term represents
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the cost to load the JDIs and is given by (9). The th ird  term represents the cost to 

write the new restricted JDIs where jVr(JDI) is given by and IF*! =

Here <Tf represents selectivity on the fact table and similarly, <ro represents selectivity 

on dimension table D. For simplicity, it  is assumed that selectivity is the same for 

a ll dimension tables. The effect of this restriction is to reduce the number of relevant 

tuples based on and <rD. Hence the cardinality of each JD I is reduced to |F*|.

The cost to create the output BDIs can be expressed as:

V obdi ( v r(JDI) +  +  jtf„(C )) (15)
Devceco '  c 1

For each participating dimension table and for each column appearing in the jo in 

result, several passes may have to be made in order to scan the restricted JDI, locate 

the associated dimension table column value, and then write the value to the output 

BDI. We let L c  represent the number of passes required, which is given by ,

where Aft(C) is the total number of blocks required for the input BDI and is given by 

— . M  is the number of blocks allocated to the input BDI and depends on the 

available memory, which is the total memory less what is already loaded. We discuss 

memory requirements of SJS in more detail later in this section. Ma{C) represents 

the tota l number o f blocks required for the output BDI and is given by | ~ C- . 

Returning to the actual processing, for each pass, all blocks of the corresponding JDI 

must be loaded (the first term in (15)), the number of blocks of the input BDI that 

fit in memory must be loaded (the second term in (15)), and a ll blocks of the output 

BDI must be accessed (the th ird term in (15)).

The expression in (15) can be simplified to give the following:

A/obdi =  JVr(JDI) ^  Fc +M >(B D I) +  ^  LcAfa{C) (16)
oeo cecD Dev cecD

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

where A/p (BDI) is the cost to retrieve a ll blocks containing relevant dimension table 

BDIs and is given by (8).

The cost to create the final output can be expressed as:

J V W  =  +  JV>(BDI) + £  £  LcK ( C )
Dev cecD

( IT )

where the first term corresponds to the cost to load Rp, the second term corresponds 

to the cost to load the fact table output BDIs and is given by (10), and the third 

term corresponds to the cost to load the dimension table output BDIs created in the 

previous phase.

The minimum memory requirements for SJS are quite small and are given by:

Since each phase in SJS has different memory requirements, (18) is based on the mem

ory requirements for the final output merge phase, which requires the most memory 

of all phases. Therefore, the first term corresponds to one block of memory for Rp, 

the second term corresponds to one block for each of the dimension table output 

columns, and the th ird  term corresponds to one block for each o f the fact table out

put columns. Finally, the last term corresponds to the number of blocks required for 

the dimensional rowsets.

Having analyzed the query processing cost based on Datalndexes, we now turn 

our attention to different types of indexing structures. In the next section, we present 

an analysis of the cost to perform a star-join query using different indexing structures.
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4.2 Comparative Analyses of Existing Indexing Tech

niques

The cost to perform a star-join query, as expressed in equation (2), is the sum of the 

cost to construct rowsets corresponding to all selection predicates (^M owset). and 

the cost to jo in  these rowsets (M o i n ) -  Following this model again, we analyze the 

cost of evaluating star jo in  processing using different techniques and index structures. 

In the ensuing analysis we consider virtua lly all the state-of-the-art access structures 

used in data warehouses currently. For rowset selections, we use B-Tree indexes, 

Bitmap indexes, Bit-sliced indexes and Projection Indexes, while for joins we use the 

Bitmap Join Index. In each case, we first derive expressions that yield the best case 

expected performance of each approach and then compare these results to determine 

which approach is the most promising, and under what conditions.

4 . 2 . 1  Comparative Anaysis of A row set

4.2.1.1 M owset for B+-tree Index

Possibly the most common indexing scheme available is the B+-tree . This structure 

consists of a balanced tree whose nodes occupy each a single data block. The data 

blocks in the leaf level make up a sorted list of the V  distinct search-key values in the 

column being indexed (in our sample query above, this would match, for instance, 

the number of unique values for the Nation field in the Customer table). Attached 

to each one of the unique values is a list of the RIDs of the records corresponding 

to that value. B+-trees are often implemented so as to reduce the number of tree 

reorganizations necessary when the underlying data is updated. This translates to 

an average utilization of about 69% for the nodes in the tree [34]. While this is 

indeed useful in transaction processing systems, this overhead is not needed in the
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read-mostly environment of data warehouses. In this study, thus, we assume that the 

tree is optim ally filled (i.e., almost all nodes are fu ll). We also assume that a ll values 

obtained in a range query are contiguous.

The cost to construct a selection predicate rowset w ith a B-tree can be expressed 

as follows:

A / rowset (B-tree) =  A/descent (B-tree) +  jV^eaf(B-tree) +  A / r i d -usi (B-tree) (19)

where A/decent is the cost of descending the tree, jVjeaf is the cost of scanning the 

leaf-level for a ll matching entries, and A/rio-iist is the cost of actually accessing all 

RID-lists. We now derive expressions for each of these components.

The cost to descend a B+-tree depends on the number of levels in the tree. The 

number o f levels is given by [logP V ] , where P  is the order o f the tree and V  represents 

the number of distinct values present in the column being indexed. The order of the 

tree is K  + 1  where K  is the number of search key values per node and K  is given by 

[  m(C)+B-]  • This expression determines the number of key values that can fit in a node 

given the size o f each key value, pointer pair (w(C ) -f 7r), and the effective blocksize, 

B. Since we do not need to include the leaf level, the cost to descend the tree is then 

as follows:

A/descent (B-tree) =  flogp V - l ]  (20)

The cost o f scanning the leaf-level is the number of blocks accessed at the leaf 

level and is given by:

A/ieaf(B-tree) =
Grange (21)

K

where Vrange is the number of distinct search-key values referenced by the range selec

tion and K  is as defined previously. This expression follows from the fact that there 

are Kange distinct search-key values in the range and K  key values per node. Note
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that in the best case, this expression evaluates to one since only a single block access 

is required.

The cost of accessing the RID-lists is given by the following expression:

MuD-iist (B-tree) —
r \T\

V x B
W  (22)

where r  is the size of a RID in bytes, \T\ is the number of records present in the table, 

V'range is the number of distinct search-key values referenced by the range selection, 

and B  and V  are as defined previously. In the sample query from the previous 

section, FAnge for the predicate “T.Year BETWEEN 1996 AND 1998" is 3, since the 

range covers 3 years. In deriving this expression, we assume that the distribution of 

distinct values is uniform. Thus the average number o f RIDs per RID-list is given by 

Ip . The size o f a R ID-list, in bytes, is then Dividing by the effective blocksize

then gives the number of blocks per RID-list, r|T| . Finally, m ultiplying by theV x B

number of distinct search-key values in the range results in the number of blocks 

required to access the RID-lists, as given in equation (22).

To sim plify the analysis, we drop all ceiling ([•]) functions and approximate the 

cost of building a rowset using a B+-tree to be:

A /ro w s e t (B-tree) ~  logp V  — 14 j^r- +  ^ y  ^  ^  K a n g e  (23)

4.2.1.2 A/'rowset for a Bitmap Index

A bitmapped index is identical to a conventional B-tree except that the rowsets 

corresponding to each unique search-key value are represented as b it vectors instead 

of RID lists [98J. As in the case of the B+-tree , the cost of performing a range
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selection w ith a bitmapped index can be expressed as follows:

■A/rowset(B itm ap) =  A/descent (Bitmap) +  A4af(B itm ap) +  A/RiD-iist(Bitmap) (24)

where A/descent and A/ieaf are exactly the same as for the B+-tree . The difference in 

these two structures appears in the th ird term, the cost to access the RID-lists, since 

these are stored differently in the two structures. In practice, in a bitmapped index, 

a certain amount of compression is typically employed in storing the bitmaps. We 

thus assume a compression factor /  (0 <  /  <  1), which is a percentage indicating the 

compression level ( /  =  1 indicates no compression). We can then express A/rid-usi as 

follows:

number of blocks per b it vector. M ultiplying this expression by V'range gives the 

total number of blocks accessed, which is then weighted by the compression factor. 

Applying the same simplifications as in (23), the rowset construction cost using a 

bitmapped index can be expressed as:

From equations 23 and 26, there appears to be a tradeoff between B+-tree and

less storage than B+-tree as significant compression can usually be achieved on the 

bitmaps. We now provide an illustrative example. A simple compression technique 

used in bitmapped indexes [98] is to represent the rowsets as bitmaps only when 

the bitmap representation is smaller than a RID list representation. I t  is easily seen 

that a bitmapped index constructed according to this method can never require more

A /R iD-iis t(B itm ap) =  / (25)

where ^  is the size of a b it vector in bytes, and so ^  represents the average

A /ro w s e t (Bitmap) «  logP V  -  1 +  +  f v;range (26)

bitmapped indexes. However, in practice, bitmapped indexes almost always require
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storage than a B^-tree . O f course, this compression technique is quite simple and 

more effective compression mechanisms can be used. Thus we conclude the following 

result:

R esu lt 2 The performance of a bitmapped index is never worse than that of a con

ventional B-tree index.

Because of this result, in the remainder of this analysis, we do not consider the B+-tree 

but rather concentrate on the bitmapped index.

4.2.1.3 A /ro w s e t for a Projection Index

A projection index corresponds to a m irror copy of the column being indexed [98]. 

Like a single column BDI, to evaluate a selection using a projection index, it is 

necessary to scan the entire lis t and evaluate the selection predicate on each value in 

the list.

4.2.1.4 A/rowset for a Bit-sliced Index

Like the projection index and BDI, the bit-sliced index1 also scans the entire index. 

In addition, each slice must be accessed in turn, which requires that a small header 

that points to each of the bit-slices w ill need to be accessed. Since the cost to access 

each slice is usually quite small, we can disregard this cost. Thus the actual cost 

incurred w ith these two techniques can be expressed as:

A /rowset (Bit-sliced) =  A/MvsErCProjection) =
m  x w(C) 

B
(27)

l [98] gives an efficient algorithm for performing range queries on bit-sliced indexes. This algorithm 
uses multiple bit vectors to compute the final rowset. These intermediary bit vectors are generated 
by scanning each bit slice in the index.
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Applying the usual simplifications, the cost of evaluating a selection on a column C 

indexed by either of the above two methods is simply given by:

Note that equations (27) and (28) are equivalent to (3) and (4), respectively. Thus we 

conclude that the cost to construct a rowset using either a projection index, bit-sliced 

index, or BDI are essentially the same.

4.2.1.5 Cost comparisons

techniques, we can now compare these performances to understand the conditions 

under which a particular scheme performs the best. To lend some structure to these 

comparisons, we classify the indexing mechanisms into two classes: (a) Indexing tech

niques based on ordinal positions, which include projection indexes, bit-sliced indexes, 

BDIs and JDIs, and (b) Tree Based Indexing Techniques, which include B+-trees and 

Bitmapped indexes.

Comparison of Indexing Techniques based on Ordinal Positions

From expressions (4) and (28), it  can be seen that the performances of projection 

indexes, BDIs and bit-sliced indexes is equivalent. We thus turn our attention to 

comparing BDIs and JDIs. Using (4) and (6), we can determine that the performance 

of a BDI is better than that of a JDI if

A/rowset (Bit-sliced) as ■A/'RQWSET (Pro ject ion) (28)

Having determined the best-case performance o f rowset evaluation w ith different

(29)

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

This result provides an easy decision guideline for the physical design of a table in a 

data warehouse. The right-hand side o f this inequality can never be greater than 1. 

Thus, we immediately note the following result.

Result 3 Contrary to popular belief, a BDI does not always perform better than a 

JDI. In fact, a JD I performs better i f r  < w(C), that is, i f  the size of a RID is smaller 

than the width of the column.

More precisely, the higher the ratio ^  o f the column of interest, the smaller the right 

hand side of the above equation and hence the larger the value of w{C) for which 

BDI is preferable (for a given r).

Recall that we proposed the JDI only for foreign key columns. An alternative 

approach using a JD I would consist of a BDI containing each o f the V' distinct values 

taken by the column and an associated JDI onto that BDI, to map these V  values to 

records in the table. To illustrate, let us consider the SALES.ShipMode column from 

the example in section 3.2; the TPC-D benchmark indicates that this can take one 

of 9 different values. Equation 29 clearly indicates that ShipMode would be better 

represented as a JD I w ith an associated look-up BDI (e.g., ShipMode.Type) than as 

a simple BDI; indeed, (29) indicates =  0.6 <  1 -  | |  «  1. In this case, the 

JD I/B D I combination would require only 4503 blocks, whereas a simple BDI would 

need 7500 blocks o f storage. Hence, it may be more efficient to implement a wide, 

repeating column as a JDI w ith an associated look-up BDI than as a simple BDI.

Comparison of Tree-Based Techniques and Ordinal-Position Based Tech

niques

Since we have shown already that a bitmapped index can never cost more than a 

B-tree index, we begin by comparing bitmapped indexes w ith BDIs. By comparing 

the last term of (26) (the first two terms are usually quite small and can thus be
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disregarded to sim plify the analysis) and (4), it  is easily seen that a BDI w ill perform 

better if:

8 w(C)
7V k n g e  > ^ T 1  ■ (30)

This simply states that, for a given compression factor, a BDI performs better 

than a bitmapped index when the selection range of a query is ’large’. For example, 

suppose /  is 0.2 and the indexed column is CUSTOMER.AcctBal from the star schema 

of Figure 6, which has a width w(C) o f 8 bytes. This column appears to be a 

reasonable candidate for indexing since it is likely that account balances would be 

queried frequently. The above relationship indicates that a BDI w ill perform better if  

the number of distinct values in the selection range (i.e., Vrange) is at least 320. Note 

that even though we claim that a BDI performs better for ’large’ values of V^ge, 

320 is not really that large when compared to the cardinality of the CUSTOMER table, 

150,000. Larger values of /  would imply that a BDI is preferable for even smaller 

values of V^ge. Thus we can conclude the following:

R esu lt 4 A BDI outperforms a bitmapped index i f  the number of search-key values 

in the predicate range is greater than the ratio of the width of the column to the 

compression factor.

Note that BDIs, like bitmapped indexes, can also be compressed, which would 

improve their performance. However, in this analysis, we compare uncompressed 

BDIs to compressed bitmapped indexes. In other words, we compare the worst case 

BDI to the best case bitmapped index.

A sim ilar analysis can be performed to compare the performance of bitmapped 

indexes and JDIs. From (26) and (6), it is easily seen that a JDI w ill perform better
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Similar to the results obtained for the BDI, we conclude the following:

R esu lt 5 A JD I outperforms a bitmapped index i f  the number of search-key values 

in the predicate range is relatively large.

These results conclude our study of the rowset construction performance of the 

different indexing schemes under study. The results o f this analysis can be summa

rized as follows. O f the indexes that rely on the ordinal position of records, the best 

performing ones are the JDI or the BDI (or the projection index). The cutoff point 

between the two occurs when =  1 — However, the bitmapped index some

times performs better than each one of these approaches, but this would only occur 

when V^nge is relatively small. We summarize the above results in table 6, where B I 

denotes the bitmapped index.

Better than BI if Better than BDI if Better than JDI if
BI - rr  ^  ® 1u(C) 

'r a n g e  v  j  '
rr ^ o I  V  m(C)+r|r| \  

range 0 [  / f f j  ' ' J
BDI y  ^ 8  Ul(C)

K range £. t - r  >  1 v
w ( o  - 1 m

JDI y  ^  o  /  V uKO+rlTh  
• 'range — 8 (  f \T\ )

r  ,  , V 
w(C) ^  1 |T[

Table 6: Comparison of the rowset-construction performance of the different indexes 
under study

Having examined the rowset construction performance of different access schemes, 

we now turn our attention to the second part of the cost o f performing star joins, 

namely JVjqik, the cost of performing a jo in  on restricted tables.
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4.2.2 Comparative Analysis of A/join

Bitmapped indexes are used in Oracle 8  and BJIs in the Inform ix Universal Server. 

Though we would have liked to compare the performance of our algorithms w ith that 

of Red Brick’s STARjoin approach, we were unable to obtain enough information to 

model STARjoins w ith any level of detail. However, as w ill become clear later on 

in this section, the high-performance of our algorithms is strongly tied to the fact 

that Datalndexes do not store table rows contiguously. The Red Brick system, how

ever, relies on conventional storage approaches; hence we believe that our proposed 

algorithms also outperform the STARjoin approach for the m ajority of OLAP-type 

queries. It  would, however, be interesting to verify -o r refute- this belief.

Also, we note that some of the indexes analyzed in section 4.2.1.1 (namely pro

jection indexes and bit-sliced indexes) seem to provide little  help in computing joins. 

Our analysis in section 4.2.1 . 1  also indicates that bitmapped indexes w ill never per

form worse than B+-trees . We thus do not investigate the performance of star joins 

using projection indexes, bit-sliced indexes or B+-trees . Instead, we concentrate on 

the approaches based on bitmapped indexes, BJIs and Datalndexes.

4.2.2.1 Bitmapped-Join Indexes

Based on BJIs, a star jo in  algorithm proceeds roughly as follows. The dimensional 

rowsets (i.e., computed during the predicate selection phase are used

to determine the set of matching records in the fact table w ith the corresponding 

BJI. In other words, for a dimension table, D, the leaf-level o f the corresponding 

BJI is scanned, and the rowsets associated w ith rows that appear in rowset Rp  are 

loaded and bitwise OR’ed together. When these operations have been applied to all 

participating dimension tables, the result is the join rowset Rjonr which indicates 

which records o f the fact table appear in the jo in result. Rjqin can then be used in
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one of two ways, depending on the amount of available memory.

In the first approach, a ll relevant columns and rows from the dimension tables 

(including the primary key column) are extracted from the dimension tables and 

pinned in memory. The algorithm then proceeds sim ilarly to the SJL algorithm 

we proposed: the fact table F  is scanned in /?joih order, and the result rows are 

constructed from the in-memory structures, then output.

Hence, we can compute that the overall best case cost of performing the jo in with 

bitmapped indexes, given that enough memory is available, and assuming that all 

rowsets are packed (for reasons stated previously), is:

A/jOIh(BJI) =  M Rjoix +  J^Dim +  N F-scan » (32)

where represents the cost o f forming the join-rowset (Rjoik ), M jimthe cost of 

loading all dimensional tuples of interest, and Mf-scanthe cost of scanning the fact- 

table itself. We now derive expressions for each of these components. To form fljom 

requires descending the tree, scanning the leaf level, and then loading the blocks 

having rowsets that appear in the jo in . Thus the cost to form R ^m  , can be expressed 

as follows:

where the first term corresponds to the cost to descend the tree, the second term 

corresponds to the cost to scan the leaf level, and the th ird term corresponds to 

the cost to load the relevant blocks of rowsets. In  the first term, Pq represents the 

order of the tree for dimension table D and Vq represents the number of distinct 

search key values in D. Both of these terms are as defined in section 4.2.1.1, w ith 

the exception that the width of each column, pointer pair is different. Specifically,
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an RID is contained in each node rather than a column value. Thus, the expression 

for Pq is then K q + 1 , where K q represents the number of search keys per node in 

the index for D  and K q = [ 5̂ 7 ] • In the second term, |D| represents the cardinality 

of dimension table D and Co represents the selectivity on D. In the best case, only 

Oj|.D| blocks must be accessed at the leaf level, whereas in the worst case, all blocks 

must be accessed.

The cost to load dimensional tuples, jV"Dim, is given by:

Aoim — ^
ren

\T\w (T)
B

(34)

where w(T) represents the width of dimension table T. Note that in this case the 

entire tuple (all columns) must be loaded.

Finally, the cost to scan the fact table, N p.scan, is given by:

A f -scan =  rain ( <t f | F | ,(-
W F )

B
(35)

where w (F ) represents the width of the fact table. This cost depends on the selectivity 

o f F . In the best case, only ? f|F | blocks must be accessed, whereas in the worst case, 

a ll blocks must be accessed.

The total memory requirements for this first approach can be expressed as:

•Mjoih(b j i) =  1 +  p i  +  £
D e v

\D W D )
B

(36)

where the first term corresponds to a block of memory for the fact table, the 

second term corresponds to a block of memory for each dimension table, and the 

th ird  term corresponds to the memory required for pinning the relevant dimension 

tables in memory.
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The second approach for evaluating star-joins w ith BJIs is based on the pairwise, 

hash-join technique. It  should be applied when there is not enough memory to load 

a ll necessary dimensional columns into memory. Once Rjom has been determined, 

the relevant values from the different tables are extracted from the source tables and 

stored in temporary files. These temporary files are then joined pair-wise until the 

final jo in  result is computed, thereby requiring \V\ individual two-way joins. Since 

it  is well known [98] that pairwise joins do not perform well in a data warehouse 

environment, we do not include the cost analysis of this approach.

4.2.2.2 Bitmapped Indexes

Bitmapped indexes may also be used to perform a star-join sim ilarly to BJIs. How

ever, since bitmapped indexes are single-table structures, more operations are required 

during a jo in. Specifically, while a BJI contains RIDS and thus allows direct access 

to a particular dimension table, a bitmapped index contains values and therefore 

requires accessing the primary key values from the participating dimensional table 

tuples. These tuples are then used to scan the bitmapped indexes on the correspond

ing fact table columns, resulting in additional accesses in creating the jo in  rowset 

J?j o ih - These additional accesses result in approximately the same number of block 

accesses as a pairwise jo in  between the fact table and each of the dimension tables. 

In addition, the size of the tree structure o f each index might be slightly different 

from those used in BJIs. For instance, the values in bitmapped indexes may vary in 

size, while the RIDS in BJIs are typically rather small and constant in size. Based 

on these differences, the following result can easily be shown:

Result 6 Bitmapped join indexes outperform bitmapped indexes for evaluating star 

joins.
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4.2.2.3 Cost com parison o f B itm apped-Jo in  and D atalndexes

We now compare the performance of Datalndexes and bitmapped jo in  indexes under 

packed conditions. To do so, we compare the worst-case performance expressions for 

SJL to the best case expressions for bitmapped jo in  indexes. By comparing (and 

making the usual simplifications) to (7) and (32), it can be shown that SJL can 

outperform BJI and other approaches if  the following condition holds true:

Hog-pQjPI ^  8r

m  -  7 '  1 0

To derive this condition, we have assumed that all columns from the fact table appear 

in the output (i.e., SceCj?W(C) = w(F)) and that all dimension table columns for 

participating dimension tables also appear in the output (i.e., Y^cec0 W(C) =  W{F))). 

These assumptions are strongly biased towards traditional approaches. Clearly, the 

fewer the number of output columns, the better Datalndexes w ill perform, as only the 

relevant columns w ill need to fetched, unlike traditional approaches where all columns 

w ill be fetched, regardless of the desired output. Thus, by making the assumption 

that a ll fact table columns are needed for output, we nullify a strong advantage of 

Datalndexes. Even then, SJL outperforms the other approaches in a number of cases. 

Indeed the above condition can be understood as follows:

R esu lt 7 SJL outperforms other star-join approaches i f  the average selectivity on the 

dimension tables is greater than the ratio of the RID size to the compression factor.

In other words, SJL outperforms other star-join approaches i f  the average number of 

tuples accessed from each dimension table is large. Referring again to the star schema 

o f Figure 6 , i f  we assume a RID size r  of 6  bytes and a compression factor /  of 0.2, 

then at least 240 tuples must be selected, on average, from a dimension table for SJL 

to outperform the other approaches. For less compressed representations (i.e., larger
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values of / ) ,  SJL can outperform other approaches for even smaller dimension table 

selectivities.

In the next section, we perform a comparative analysis of the star-join query costs 

(■A/*star) associated w ith the different index structures under study. We have shown in 

this section that a Datalndex-based approach and the bitmapped index/BJI approach 

are both among the most efficient known approaches for evaluating star-joins. In the 

next section, thus, we only consider these approaches and w ill refer to them as the 

SJL/Datalndex (SJL), SJS/Datalndex (SJS), and the bitmapped index/BJI (BJI) 

approaches. Also, to simplify the analysis, we only consider the best performance 

obtainable with the BJI approach with the worst-case performance of Datalndexes, 

which should be sufficient to demonstrate the superiority of Datalndexes.

4.3 Cost Comparison Preliminaries

The cost comparisons were generated based on the expressions we have presented in 

this dissertation for the worst- or best-case performance achievable with the different 

algorithms under study. The query utilized to perform the analysis is the query 

presented in Section 3.3 and joins the TIME, CUSTOMER, SUPPLIER and SALES tables 

of our sample star-schema. The query is repeated below for convenience.

SELECT U.Name, S.ExtPrice
FROM SALES S, TIME T, CUSTOMER C, SUPPLIER U
WHERE T.Year BETWEEN 1996 AND 1998 AND U.Nation='United S ta te s ' AND 
C.Nation=’United S ta tes'
AND S.ShipDate = T.TimeKey AND S.CustKey = C.CustKey AND S.SuppKey =
U.SuppKey

The corresponding selection predicates occur on the TIME.Year, CUSTOMER.Nation 

and SUPPLIER. Nat ion columns, and the columns displayed in the result are SUPPLIER. Name 

and SALES.ExtPrice. This query is thus sim ilar to the ‘‘Volume Shipping Query5
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in [138], which identifies sales volumes between different nations. Such a query is 

relatively typical o f OLAP environments.

Finally, we continue to use the same metric as used previously, the number of 

blocks accessed to evaluate the query, Mstar. Using this metric, we first examine 

a baseline case where only the overall size of the warehouse is varied. We then 

analyze the corresponding performance sensitivities w ith respect to query selectivity, 

compression levels, and, for the SJS approach, available memory. Table 7 lists the 

parameter values used in the baseline analysis.

4.3.1 Baseline Case

For the baseline experiment, we assume the following parameter values:

•  Selectivity on the fact table, <r/r, is 0.01 (i.e., 1 % of fact table rows appear in 

the jo in  result).

•  Selectivity on each dimension table, <To, is 0.05 (i.e., 5% o f the rows of each 

dimension table appear in the join result).

•  Selectivity on each range predicate, V'range, is computed as <fr|Tjc, where <;t\T\ 

represents the number of rows appearing in the jo in result for table T  and c is 

the distinctness factor of the range selection, which we assume to be 0.2. For 

instance, consider the base case for the SUPPLIER. Hat ion  selection predicate. 

I f  <Td =  0.05 and |SUPPLIER| =  10,000, then 500 rows from this table appear in 

the jo in  result. M ultiplying this number by the distinctness factor of 0.2 results 

in a V^ngevalue o f 100. Thus there are 100 distinct values in this range selection.

Holding the above values constant, we then vary the size o f the database by varying 

the scale factor from 0.1 to 1000. This results in overall database sizes ranging from 

about 8 6  MB to about 860 GB. As we w ill soon show, the expressions derived for the
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Parameter Description Value
\V\ Number of dimensions tables involved in join 3
\Cf \ Number of fact-table columns that contribute to the 

join result
1

B Effective Size, in bytes, of a data block 8,000
7r Size, in bytes, of a pointer to a data block 4
r Size, in bytes, of a RID 6
| SALES| Number of records in SALES fact table 6,000,000 x 

scale factor
Selectivity factor on fact table 0.01

|TIME| Number of records in TIME dimension table 2,557
|CUST0MER| Number of records in CUSTOMER dimension table 150,000 x scale 

factor
|SUPPLIER| Number of records in SUPPLIER dimension table 10,000 x scale 

factor
<TD Selectivity factor on dimension table D 0.05
c Distinctness factor of range selection 0.2
Grange Number of distinct search-key values referenced by a 

particular range selection
<.t \T \c

tu(T.Year) Column width of TIME.Year, in bytes 4
w(C.Nation) Column width of CUSTOMER.Nation, in bytes 25
tu(U.Nation) Column width of SUPPLIER.Nation, in bytes 25
u/(U.Name) Column width of SUPPLIER.Name, in bytes 25
w(SALES) Table width, in bytes 131
xlt(TIME) Table width, in bytes 28
to(CUSTOMER) Table width, in bytes 269
u; (SUPPLIER) Table width, in bytes 243
f Compression factor 0.2
M Number of blocks allocated to input BDI 8,000

Table 7: Parameters used in the Baseline Analysis
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memory requirements for BJI in (36), for SJL in (11), and for SJS in (18), indicate that 

BJI requires more memory than either SJL or SJS. Thus we assume in this analysis 

that, for a given database size, the system is equipped w ith sufficient memory to 

perform a star-join using the BJI approach. For instance, from (36), we know that a 

star-join using BJI for an 860 GB database requires approximately 2.5 GB o f memory. 

We then assume that for an 860 GB database, there exists 2.5 GB of main memory. 

For larger databases (e.g., scale factor greater than 1000), this assumption may not be 

valid and so different techniques must be used, such as SJS for Datalndexes and hash- 

jo in  for BJI. However, we do not consider such cases and instead focus our analysis 

on databases that are 860 GB or less in size. We include the performance of SJS in 

this range for comparison purposes. In the baseline case, we assume that 64 MB of 

memory is available to be allocated to the input BDI (i.e., M  =  8,000 blocks).

The resulting plots for the baseline case are presented in Fig. 10 (Note that Fig. 10 

as well as the sensitivity plots are displayed using a log scale for both axes). A ll 

three approaches exhibit a sim ilar pattern - the cost or number of required block 

accesses increases as the size o f the database increases. However, it  is quite clear 

from Figure 10 that both SJL and SJS outperform the BJI approach over the entire 

range. In addition, the cost of the BJI approach increases much more quickly than 

does the cost of either SJL or SJS. This is prim arily due to the fact that BDIs are 

maintained separately w ith Datalndexes and so only columns of interest need to be 

brought from disk. For a relatively small database, e.g.. 8 6  MB or scale factor 0.1, SJL 

requires only 2,007 block accesses, SJS requires 3,403 accesses, and BJI requires 7,810 

such accesses. For larger databases, this difference is at least an order of magnitude. 

For instance, an 8 6  GB database (scale factor 100) requires approximately 2 m illion 

accesses for SJL and approximately 3 m illion for SJS, compared to 1.5 billion for BJI. 

The weak performance o f BJI, especially w ith large database sizes, is largely due to 

the last term in (33), the expression for the cost to form the join-rowset From
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Figure 10: Base Case Performance (?p =  1 %, Co =  5% and /  =  20%)

this expression, we can see that BJI performs in 0 (|F | x |D |).

Overall, the base case curves clearly show that Datalndexes outperform the BJI 

approach. As we shall see, this pattern is repeated throughout the rest of our exper

iments.

4.3.2 Sensitivity to Query Selectivity

Query or fact table selectivity, <rp, is an important factor in peforming a star-join for 

a ll three approaches. For SJL, <rp impacts the cost o f scanning the fact table to create 

the final query output, as shown in (10). For SJS, Tp impacts the cost to restrict the 

JDIs (14), the cost to create the output BDIs (16), and the cost to create the final 

output (17). For BJI, <Tp also impacts the cost to construct the final output, as shown 

in (35). Based on these expressions, we would expect a decrease in Cp (i.e., higher 

selectivity) to improve the performance of a ll approaches. In order to study this 

sensitivity of the different approaches to query selectivity, we repeated the baseline
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Figure 1 1 : Sensitivity to Query Selectivity

experiments using several fact table selectivities ranging from 0.0003 to 0.1. From 

this analysis, it became clear that all approaches are more sensitive to relatively small 

values of < (e.g., less than 0.0005) and that BJI is most sensitive to changes in cf- 

We therefore chose to include results for the following values of Qr: 0.03%, 0.1%, and 

2%.

The resulting plots are shown in Fig. 11.

As expected, the overall shape of the curves in Fig. 1 1  remains the same as in the 

base case, and ail approaches do in fact benefit from higher selectivity. Overall, SJL 

s till outperforms BJI over the entire range, as shown by the two lower-most curves 

in Fig. 1 1 , which represent the cost of SJL for 1 % selectivity (i.e., the baseline case) 

and 0.03% selectivity. These are the only two curves displayed for SJL because the 

performance of SJL is largely insensitive to changes in <tf, except for very small values 

of <tf- BJI, on the other hand, exhibits a significant improvement from lower values of 

<Tf ,  but these improvements only occur for small to medium sized databases. In fact,
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for very small values of <7f  and small database size, the performance of BJI approaches 

that of SJL. However, SJL s till performs better. For instance, an 8 6  MB database 

(scale factor 0.1) and selectivity of 0.03% requires 1,587 block accesses for SJL and 

1,990 accesses for BJI. However, the same selectivity w ith an 8 6  GB database (scale 

factor 100) requires about 1.5 m illion block accesses for SJL and about 1.5 billion 

accesses for BJI.

We now examine the curves for the SJS approach (the two curves just above the 

SJL curves). Like SJL, SJS is also rather insensitive to changes in <t f - It is interest

ing to note, however, that for very small values of <tf and small database size, BJI 

outperforms SJS. For example, an 8 6  MB database (scale factor 0.1) and selectivity 

of 0.03% requires only 1,990 accesses for BJI compared to 2,983 block accesses for 

SJS. As the database size increases, however, the performance of SJS surpasses that 

of BJI. For instance, an 8 6  GB database (scale factor 100) and selectivity of 0.03% 

requires about 2.9 m illion accesses for SJS compared to about 1.5 b illion accesses for 

BJI.

From this analysis, it  appears that BJI is somewhat more sensitive to changes 

in <tf than either SJL or SJS. This phenomenon can be explained by examining the 

expressions for the cost to scan the fact table to create the final query result for 

SJL in (10) and for BJI in (35). Both expressions are sim ilar in that they take the 

minimum of either the number of fact table rows appearing in the jo in  result (i.e., 

Cf IF I) or the number of blocks required for all relevant fact table columns. The 

difference is that for BJI, the number of blocks required for fact table columns w ill 

be much greater than for SJL, since BJI requires that the entire fact table tuple be 

loaded for each tuple appearing in the jo in  result. Thus the term representing the 

number o f fact table rows w ill usually be the minimum term for BJI and so selectivity 

w ill typically have a greater impact.
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4.3.3 Sensitivity to Compression Factor

Another important factor in performing a star-join w ith the approaches in this study 

is compression. As mentioned previously, some degree of compression is typically used 

in data warehouses, so it  is worth examining the impact of such compression. Recall 

that we define the compression factor /  to be a percentage representing the degree of 

compression, where /  =  1  indicates no compression. Also recall that we assume no 

compression o f BDIs, therefore, this analysis affects only the BJI approach. The level 

of compression appears to be a significant factor in the BJI approach, as /  appears 

in both the A/rowset and A/join expressions in (26) and (33 ), respectively. By exam

ining these expressions, we would expect an increase in the amount of compression 

achieved (i.e., a decrease in / )  to improve the performance of BJI. In order to study 

this sensitivity o f BJI to varying degrees of compression, we repeated the baseline 

experiments w ith compression factors of 10% and 30% . The results are displayed in 

Fig. 1 2 .

Here again the overall shape of the curves in Fig. 12 remains the same as in the 

base case. As expected, the performance of BJI does in fact improve when more 

compression is used. For instance, for a database size of 8 6  GB (scale factor 100) in 

the baseline case (20% as shown in Fig. 1 2 ), 1.5 b illion block accesses are required for 

BJI. When more compression is applied, or /  is reduced to 0.1, the number of accesses 

decreases to approximately 759 m illion. For lower compression levels (i.e., higher / ) ,  

as expected, the number of block accesses increases for BJI (from 1.5 billion to 2 . 2  

billion).

We now examine the curves for the BJI approach w ith respect to those of SJL 

and SJS. From Figure 12, it  is clear that both SJL and SJS outperform BJI over 

the entire range. As in the baseline case, there is a significant gap between the cost 

curves for BJI and both Datalndex approaches, even for smaller database sizes. We
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Figure 1 2 : Sensitivity to Compression Factor

emphasize again the fact that these curves represent the best case BJI (some degree of 

compression) and the worst case SJL and SJS (no compression). We expect significant 

improvements in the performance of SJL and SJS when compression is introduced. 

Overall these results indicate that while increased compression levels can improve the 

performance of BJI somewhat, compression alone does not improve the performance 

enough to be comparable to the performance of the Datalndex approaches.

4.3.4 Memory Requirements

Finally, we compare the memory requirements for SJL and BJI. As shown in Figure 24, 

SJL requires significantly less memory than BJI on average. For instance, a database 

o f 8 6  GB (i.e., scale factor 100) requires only 31 MB of memory for SJL, yet requires 

243 MB for BJI. As the database size increases, the memory requirements for BJI 

increase much more quickly than for SJL. For example, a 344 GB database (i.e., scale 

factor 400) requires 125 MB of memory for SJL, yet requires 972 MB for BJI. This
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Figure 13: Memory Requirements for SJL and BJI

result is largely due to the fact that SJL loads only the columns that are relevant for 

the jo in, whereas BJI loads the entire dimension table for such columns. Even for 

smaller databases, SJL s till requires less memory than BJI. For instance, a database of 

8 6  MB (i.e., scale factor 0.1) requires 0.14 MB of memory for SJL and 0.28 MB for BJI. 

For larger databases, the SJS approach would be used, which requires only a small 

amount of memory, 64 KB for our example query. Recall from (18) that the memory 

requirements for SJS are neglible, especially when compared to the requirements of 

SJL and BJI. For this reason, the memory requirements for SJS are not included in 

Figure 24.

4.3.5 Discussion

The results of the foregoing analysis indicate that our proposed algorithms signifi

cantly outperform existing star jo in  algorithms under conditions that are likely to 

occur in practice. We have also shown that our algorithms scale well when important
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parameters such as query selectivity are varied. Furthermore, we have also shown 

that our algorithms require less memory than existing techniques.

Having presented a detailed analytical comparison, we now turn our attention to 

an actual implementation of the proposed structures and algorithms.
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Chapter 5 

An Implementation of Datalndexes

In this chapter, we describe an implementation of a data warehousing system based on 

Datalndexes, which we refer to as Curio. We also present the results of a performance 

evaluation which compares the query processing speeds, storage requirements, and 

loading times of Curio w ith those of several existing relational data warehousing 

management systems (RDWMS) products.

5.1 Implementation Details

Curio is implemented in C ++  and runs on several platforms, including Solaris, Linux, 

and Windows NT. It has both a GUI and a command-line interface and supports a 

large subset of the SQL standard. Thus, Curio appears to be relational on the surface. 

When an SQL statement is entered, it  is parsed and translated into the appropriate 

function calls so that the Curio statement processor can execute the request. For 

instance, a CREATE TABLE statement may physically create a separate Datalndex 

structure for each column in the table. Metadata is maintained for each table (e.g., 

column names, data types), so that the notion of a table s till exists when the table 

is queried. JDIs are created for columns that are specified as foreign keys. This 

metadata is stored in the Curio system catalog so that it  can be used in subsequent 

query processing.

Data can be loaded via two methods: manually, through the GUI, or in bulk,
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through a bulk load u tility . The bulk load u tility  can load data from two types of 

input sources: flat files or ODBC sources. The bulk load u tility  w ill build JDIs during 

the load process based on the schema information in the catalog.

5.2 Performance Study

We now present the results of our performance study. The products selected for 

the study are Oracle (version 8.0.5) [100], Red Brick Warehouse (version 5.1.5) [111], 

and DB2 Universal Database (version 5.0) [71]. These products were selected because 

their respective vendors have been identified as the market leaders in relational OLAP 

(ROLAP)-based data warehousing solutions. In a recent study [37], Oracle had the 

largest market share (31.8%), followed closely by IBM (21.7%). We also felt that Red 

Brick (now acquired by Informix) would be an interesting comparison as this product 

is a “warehouse mostly’’ solution (like Curio).

We first present the query processing results, since we believe query performance 

to be the most important aspect o f this analysis. A ll tests were performed on a W in

dows NT machine having a single 300 MHz Intel Pentium processor and 64 MB of 

RAM (a very low-end machine). The queries used in this experiment are based on the 

star schema shown in Figure 14. This schema has 3 dimensions: PRODUCT, CUSTOMER, 

and TIME. The fact table is PURCHASE, which has a single foreign key column corre

sponding to each of the 3 dimensions. The numbers displayed next to each column in

dicate the size o f the column in bytes. For each RDWMS product, indexes were bu ilt 

on the following columns: PURCHASE.CustomerJD, PURCHASE.ProductJD, PUR- 

CHASE.TimeKey, PURCHASE.Quantity, and CUSTOMER.Age. This scheme indexed 

only those columns used in the test queries, thus providing a significant advantage 

for the above mentioned products in terms of storage requirements. Typically, in a
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warehouse environment, indexes would be bu ilt on most ( if not all) attributes, in

curring significant additional storage overhead. Where possible, we used specialized 

indexes to give the other products as much of an advantage as possible. For example, 

bitmapped indexes were used in Oracle and star indexes in Red Brick.

PRODUCT
ProdKey
Name 
Color 
Weight

TlmeKcy

Month
Week

'  PURCHASE

PurcluucKcy 4
ProdKey 4 
CusiKey 4 
TimeKey 4 
Quantity 4 
Price 4
Type 1 
Amount 8 
Nome 5

CUSTOMER

CustKey 4
Nome 10 
Address 30 
Age 4 
Phone 4 
Total _4

56
38

■ : Foreign-key Relatior
Attribute : Key Attribute

Figure 14: Warehouse Schema Used in Performance Evaluation

The data for the schema were randomly generated and loaded into each RDWMS 

using their respective bulk load utilities. Data loading and index creation were treated 

as separate steps so that loading times could be compared to Curio (since Curio 

does not have an index creation step). Three database sizes were considered in this 

experiment: 0.25 GB, 0.5 GB, and 1 GB. Database size here refers to the size of 

the raw data, and thus does not include any overhead that may be added once the 

data is loaded. Table 8  lists the number of tuples in each table for each of the sizes 

considered.

Table 0.25 GB 0.5 GB 1 GB  
PURCHASE 5,000,000 14,000,000 22,000,000
CUSTOMER 10,000 20,000 40,000
PRODUCT 100,000 200,000 400,000
TIME__________ 2,500_______5,000 10,000

Table 8 : Table Cardinalities for Performance Evaluation 

The queries used in this experiment are described in Table 9. For each query,

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Table 9 includes a description of the query, the SQL formulation, and the character

istics o f the query. The characteristics indicate the complexity o f the query in terms 

o f number of tables joined, number of restrictions, and number of columns projected. 

For instance, Query 3 joins 3 tables, has 1 fact table restriction and 1 dimension table 

restriction, and projects 4 columns. Note that fact table restrictions are much more 

costly than dimension table restrictions, since many more tuples must be evaluated.

ID D escription_________________SQL Formulation______________________ Characteristics
1 List high volume purchases 

for a particular customer.
SELECT Purchase_ID, Type, Quantity 
FROM PURCHASE 
WHERE Customer -ID = x 
AND Quantity > y

single table query
2 restrictions
3 columns projected

2 List high volume purchases 
and the associated customers.

SELECT C.Name, Quantity 
FROM PURCHASE P, CUSTOMER C 
WHERE C.Customer-ID *  P.Customer-ID 
AND C.Customer-ID = x 
AND Quantity > y

2-way join
2 restrictions: I fact, 1 dimension 
2 columns projected

3 Find customers having 

high volume purchases o f a 

particular product.

SELECT Purchase-ID, C.Name, P2.Name, 
Quantity
FROM PURCHASE PI. PRODUCT P2. 
CUSTOMER C
WHERE PI.Product_ID *  P2.Product.ID 
AND Pl.Customer.ID *  C.Customer.ID 
AND P2.Product.ID 3 x 
AND Quantity > y

3-way join

2 restrictions: I fact, I dimension 

4 columns projected

4 Find customers having

high volume purchases of a

particular product and 
the month o f these 
purchases.

SELECT C.Name, P2.Name, Month, 
Quantity
FROM PURCHASE PI, PRODUCT P2,
CUSTOMER C, TIME T
WHERE PI.Product.ID *  P2.Product.ID
AND Pl.Customer.ID *  C.Customer.ID
AND Pl.TimeKey *  T.TimeKey
AND P2. Product .ID *  x
AND Quantity > y

4-way join

2 restrictions: I  fact, L dimension 

4 columns projected

Table 9: Queries Used in Performance Evaluation

For each of the queries, we provide a plot of the response times for each RWDMS 

at each o f the 3 data size levels. Response time, for the purposes o f this experiment, 

is defined as the elapsed time (in seconds) from the start o f the query until the first 

record is displayed. This metric was selected because the display of the first record 

marks the point at which an analyst may begin processing the retrieved information. 

The most unproductive time o f a query session is the time an analyst spends waiting
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for the first record to appear [2 2 ], and so that is what we measure in this analysis. 

Note that the queries were run under controlled conditions to eliminate the effects of 

extraneous events. In particular, the machine was run in a “stand-alone” mode, thus 

rendering unnecessary the need for running any network processes. Additionally, the 

only processes naming on the test machine other than the relevant RDWMS software 

processes were core OS processes. Also, to make the test fair, we eliminated the 

effects of caching by restarting the machine between each successive query.

The results for all tests are presented using bar charts. The numbers above each 

bar for Red Brick, DB2, and Oracle are ratios of the performance compared to that of 

Curio. We first present the results of the queries. We then follow w ith a comparison 

of storage requirements, and then a comparison of loading times.

5.2.1 Query Results

Figures 15A through 15D show the response times for each of the selected products 

on the 4 queries. In each of these figures, it is clear that Curio outperforms the other 

products, and this performance advantage increases as the raw data size increases. 

For Query 1  at the 0.25 GB level (Figure 15A), Red Brick appears to come close to 

the 16 second response time of Curio. However, Curio is s till nearly twice as fast 

as Red Brick (29 seconds). For the large data size ( 1  GB), Curio (54 seconds) is 

approximately 1 0  times faster than Oracle (548 seconds) on the same query. Note 

that Query 1 is a single table query. For more complex queries involving joins, Curio 

performs especially well as shown in Figures 15B, 15C, and 15D, which are 2 -way, 

3-way, and 4-way joins, respectively. For instance, a 4-way jo in  on a 1  GB database 

(Query 4 in Figure 15D), Curio’s response time (37 seconds) is approximately 14 

times faster than that of Oracle (546 seconds).
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Figure 15: Response Times for Queries 

5.2.2 Storage Requirements Results

We now compare the storage requirements of each product for loading the 3 sizes 

of raw data. The resulting database sizes for the unindexed data and the indexed 

data are provided in Figures 16A and 16B, respectively. From these figures, it is 

clear that in general, Curio is much more efficient in terms of storage requirements. 

For example, 1 GB of unindexed data requires nearly twice as much disk space in 

Oracle, as shown in  Figure 16A, while 1  GB of indexed data requires 3 times the 

space, as shown in  Figure 16B. Red Brick is clearly the second best performer in 

terms of storage requirements, especially for unindexed data (Figure 16A). However,
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once indexes are created, storage requirements increase significantly (e.g., more than 

1.5 times for 1 GB of data for Red Brick), as shown in Figures 16A and 16B.

Raw Data She (GB) Raw Data Size (GB)

Figure 16: Comparison of Database Sizes 

5.2.3 Loading Time Results

Finally, we examine the time to load the data and build the indexes for each product. 

Comparisons of these times are provided in Figures 17A and 17B, respectively. From 

these figures, it  is clear that an additional advantage of the Curio design is its superior 

performance in loading. W ithout even considering the fact that Curio requires no 

index creation, Curio is s till significantly faster than the other products. For example, 

Curio loaded 1  GB of data in 508 seconds, 10 times faster than Oracle (5,535 seconds, 

or just over 1.5 hours) as shown in Figure 17A. In Figure 17B, index creation times are 

displayed. Although Curio essentially has no index creation time, we have repeated 

the loading times for Curio on this plot. This figure shows the magnitude of the costs 

associated w ith  building indexes. O f the 3 other products, the fastest creation time 

for 1  GB of data is Red Brick, 14,940 seconds or just over 4 hours, while the slowest 

time is Oracle, 45,738 seconds or over 12.5 hours.
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Figure 17: Comparison of Loading Times 

5.2.4 Discussion

In the foregoing performance evaluation, we have compared the performance of our 

implementation of the Datalndex approach, Curio, to that of several leading RD

WMS products along the important dimensions of query response times, storage 

requirements, and loading times. For each dimension, we have shown that Curio 

outperforms these products, often by significant margins. These results support our 

analytical findings presented in Chapter 4.

Thus far in  this dissertation, we have focused on the design o f a data warehouse 

that is capable of providing interactive response times for complex queries on large 

volumes of data. Such a scalable data warehouse is a critical component in a ware

house of online user interaction histories. In the remainder of this dissertation, we 

discuss the proposed online user interaction approach and the role o f the data ware

house in this approach.
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Part II

The Role of Data Warehousing in 

Enabling Scalable Online User

Interaction
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Chapter 6

Online User Interaction: Overview, 
Survey, and Preliminaries

In this chapter, we begin our discussion of Online User Interaction. We begin the 

chapter w ith an overview of online user interaction. This is followed by a review of 

the literature in this area. Finally, we present several fundamental concepts related 

to online user interaction upon which our work is based.

6.1 Overview of Online User Interaction

The growth of electronic commerce during recent years has resulted in new business 

strategies, as well as the emergence of new technologies to support these strategies. 

One such business strategy that has gained momentum recently is mass customiza

tion [105, 106]. The idea behind mass customization is to provide each individual 

consumer w ith products and services that are tailored to his or her preferences. In 

his book, Mass Customization [105], Joe Pine argues that companies need to shift 

from the old world o f mass production where “standardized products, homogeneous 

markets, and long product life and development cycles were the rule” to the new 

world where “variety and customization supplant standardized products” . According 

to Pine, building one product is simply not enough anymore. Rather, companies need 

to be able to develop multiple products that meet the multiple needs of multiple con

sumers. W hile e-commerce has not necessarily allowed businesses to produce more
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products, it  has allowed them to provide consumers w ith more choices. Instead of tens 

of thousands o f books in a physical store, consumers may now choose among millions 

of books in an online store. Increasing choice, however, has also increased the amount 

of information that consumers must process before selecting products to purchase. To 

address this information overload, e-commerce sites are applying mass customization 

principles not to the products but to the presentation of products in their online 

stores [106]. In order to achieve such mass customization, many e-commerce sites are 

relying on personalization or recommender systems. We w ill refer to such systems 

more generally as online user interaction systems, since the focus o f such systems is 

to provide online interaction w ith customers.

Broadly speaking, online user interaction systems are used by e-commerce sites 

to deliver targeted content to site visitors. Targeted content may take several forms 

including product recommendations, advertisements, or special offers. For instance, 

when a user selects a product in an e-commerce site that uses recommendation tech

nology, the site may suggest products that are frequently purchased by customers who 

also purchased the selected product. Ad targeting, or more generally offer targeting, 

is an attempt to direct specific offers to specific consumers based upon the latters 

prior behavior. Personalization systems can help e-commerce sites decide as to whom 

to make which offer. For example, a site can use recommendation technology to de

termine which banner ad to display based on keywords the consumer queried, or to 

which subsection o f the product hierarchy a customer navigated. Recommendation 

technology can also help e-commerce sites implement a one-to-one marketing [103] 

strategy. One-to-one marketing attempts to overcome the impersonal nature of mar

keting by using technology to assist businesses in treating each, consumer individually. 

A recommender system can help by analyzing a database of consumer preferences to 

overcome the lim itations of segment-based mass marketing by presenting each cus

tomer w ith a personal set of recommendations.
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Online user interaction systems can benefit e-commerce sites in a number of ways:

• Converting browsers into buyers. Visitors to web sites often browse a 

site without purchasing anything. Personalization technologies help consumers 

find the products they are looking for, reducing the information overload that 

consumers often experience. This in turn can convert browsers into buyers.

• Increasing cross-sell. Personalization technologies can improve cross-sell by 

suggesting additional products for the customer to purchase. I f  the recommen

dations are good, the average order size should increase. For instance, a site 

might recommend additional products in the checkout process, based on those 

products already in the shopping cart.

• Building loyalty. In e-commerce, where a site’s competitors are only a click 

or two away, gaining consumer loyalty is an essential business strategy [113, 

112]. Personalization technologies can improve loyalty by creating a value added 

relationship between the site and the customer. Sites invest in learning about 

their customers, use recommender systems to operationalize that learning, and 

present custom interfaces that match consumer needs. Consumers repay these 

sites by returning to the ones that best match their needs. The more a customer 

uses the recommendation system - training it  on his preferences - the more loyal 

he is to the site.

Recent evidence suggests that online user interaction solutions can indeed have a 

significant business impact. For instance, Amazon.com is well known for its use of 

recommendation technology. In particular, Amazon’s Books section features various 

types of recommendations, including Customers Who Bought, which recommends 

books frequently purchased by customers who purchased the selected book, and Pur

chase Circles, which allows customers to view the “top 10” lis t for a given geographic
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region, company, educational institution, or other organization. Amazon’s extensive 

use of recommendation technology is believed to be the reason for Amazon’s loyal 

customer base: 78% o f Amazon’s sales are from returning customers [45]. While the 

business impact of online user interaction solutions is itself an interesting research 

problem, it is beyond the scope of this dissertation and hence, we do not elaborate 

further on this topic. Rather, we are interested in the technological underpinnings of 

such systems.

The basic idea behind virtua lly a ll online user interaction schemes is to accumu

late vast amounts of historical data, usually stored in a database system, and then 

query this historical information based on ’’ current” visitation patterns to provide 

a personalized experience. Due to the sheer size of these historical knowledge bases 

(usually several hundred gigabytes to a few terabytes), querying the data is a very 

costly activ ity and thus takes place offline. Thus, customer profiles or recommenda

tions are generated offline and hence are only updated whenever these offline processes 

run. A widely used personalization technique that follows this approach is to pro

vide recommendations using a clustering algorithm called collaborative filtering [124]. 

Essentially, collaborative filtering places users into static groups based on their pref

erences (collaborative filtering w ill be discussed in more detail in Section 6 .2 .1 .1 ).

While such pre-clustered profiling has indeed provided benefits, the static nature 

of this approach is problematic. A key lim itation of existing recommendation tech

nologies is that they lack the ab ility to adapt to changing user behavior patterns. To 

see this, consider an online book site that provides recommendations to its customers 

based on collaborative filtering. Suppose a customer, Bob, purchases a Chemistry 

textbook for his brother from the site. When Bob returns for subsequent visits look

ing for his preferred reading, Science Fiction, Bob finds his recommendation list fu ll 

o f Chemistry books. After a few clicks, the system should recognize that Bob is not 

interested in  Chemistry books in his current visit and adjust its responses to be in
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tune w ith his more recent behavior. This is possible only if  the system can recognize 

changing behavior patterns.

Another lim ita tion of existing personalization solutions is that they are unable 

to scale to support the large numbers of customers and products typical of many 

e-commerce sites. It  is not unheard of for popular e-commerce sites to have hundreds 

of thousands to millions of customers and even hundreds o f thousands to millions 

of products. The approach usually taken to address this scalability problem is to 

provide personalization at very coarse granularities. This is typically done by placing 

customers into one of a small number of groups (typically on the order of 1 0  to 

2 0  groups), where every customer w ithin a particular group is presented the same 

content.

Referring back to the online book site example, suppose the site has 500,000 

customers and 100,000 products. When the collaborative filtering algorithms run, 

they w ill produce a small number of clusters of customers who have sim ilar purchasing 

preferences. Recommendations are then generated based on these clusters. Suppose 

cluster 1 contains 50,000 customers who have indicated a preference for Chemistry 

books. Each time one of these customers visits the site, his recommendation list w ill 

include selections from the Chemistry category. In fact, a ll o f the 50,000 customers in 

this group w ill be treated the same, regardless of their unique interests or behavior. 

Providing recommendations at such coarse granularities clearly does not realize the 

potential o f one-to-one interaction that is possible in an online environment.

As the above-mentioned problems w ith existing personalization solutions indicate, 

providing true online user interaction requires a scalable solution that is responsive to 

users’ changing behavior patterns, and therefore reduces to performing the following 

tasks:

I.  Tracking users’ movements or behavior patterns on a site

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

2. Accessing a vast knowledge base that correlates specific behavior w ith stored 

knowledge, and

3. Generating responses.

A critical requirement is that responses must be generated w ithin subsecond time 

frames. Clearly, this problem is one o f scale. It is extremely difficu lt to track tens 

of thousands o f online shoppers in near real-time, and even more difficu lt to access 

a database online and provide near real-time responses. The primary bottleneck lies 

in the underlying database systems that are employed to store the knowledge bases - 

existing database systems cannot effectively support the requirements of true online 

user interaction.

There are several reasons why existing database systems are unable to scale to 

support the requirements of online user interaction. First, the size of the underlying 

databases is typically vast, and may contain several types of data (e.g., navigational, 

transactional, demographic). Given that an e-commerce catalog may have virtua lly 

an infinite number of possible navigation paths, navigational data alone can easily 

result in database sizes ranging from several hundred gigabytes to a few terabytes. 

Second, the query operations required on this data w ill typically be complex, usually 

requiring joins of several large tables. Third, given the interactive nature of the Web, 

query results must be delivered w ithin subsecond time frames. Finally, the underlying 

database systems must be able to provide such performance even in the presence of 

heavy user loads (e.g., thousands to tens of thousands of simultaneous users).

In an attempt to overcome these issues, existing online user interaction solutions 

rely on one of two basic approaches: (1 ) static profiling techniques described pre

viously that fit customers into one o f a small number of predefined static profiles 

(usually based on statically pre-declared information, e.g., login or zip code) and 

provide canned online responses, or (2 ) delayed, offline interaction such as email or
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direct mail. The former approach is the approach taken by persona liza tion solu

tions, while the latter approach is taken by custom er re la tionsh ip  management 

(CRM) solutions. We w ill describe these existing approaches in more detail in the 

next section. In the chapters that follow, we w ill present our online user interaction 

system which overcomes the above-mentioned lim itations of existing solutions.

Having provided an overview of online user interaction, we next review the work 

in this area that is relevant to this dissertation.

6.2 Survey of Online User Interaction

Significant work has emerged recently w ithin the realm of online user interaction. In 

this section, we review the work that is relevant to our research, which we classify into 

three broad categories: 1 ) web personalization, 2 ) customer relationship management 

(CRM), and 3) models for user interaction.

6.2.1 Web Personalization

W ithin the academic literature, web personalization is emerging as a major field of 

research. The primary objective of web personalization systems is to provide useful 

recommendations to customers based on analysis of purchase and preference data. 

Thus, we w ill use the terms personalization system and recommender system inter

changeably. A t present, there are two main approaches to personalization: collabo

rative filtering and data mining. Each of these approaches is now discussed in more 

detail.
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6.2.1.1 Collaborative Filtering

Collaborative filtering (CF) [124] is a means of personalization in which products are 

recommended to a target customer based on the opinions of other customers. CF rec

ommender systems employ statistical techniques to find a set of customers, referred 

to as neighbors, that have a history of agreeing w ith the target user (i.e., they either 

rate different products sim ilarly or they tend to buy sim ilar sets of products). Once 

a neighborhood of users is formed, these systems use several algorithms to produce 

recommendations. CF-based recommender systems generally involve three main com

ponents: representation, neighborhood formation, and recommendation generation.

•  Representation. This component deals w ith the scheme used to model the prod

ucts that have already been purchased by a customer. In typical CF recom

mender systems, the input data is a collection of historical purchasing trans

actions o f n customer and m products. It is usually represented as an m x n 

customer-product matrix, R, such that r* j is 1  if  the ith  customer has purchased 

the jth  product, and 0, otherwise. Although this representation is conceptu

ally simple, it  has lim itations associated w ith it. For instance, in practice, the 

customer-product m atrix is typically quite sparse, which can adversely impact 

the ab ility  o f nearest neighbor algorithms to make recommendations. Tech

niques to address this problem are proposed in [120, 53]. In addition, nearest 

neighbor algorithms require computation that grows w ith both the number of 

customers and the number of products. Thus, given that web-based recom

mender systems must often deal w ith millions of customers and millions of 

products, scalabilty is a serious issue. In [119], techniques to address these 

issues are proposed and analyzed.

•  Neighborhood Formation. This component focuses on the problem of how to 

identify the other neighboring customers. This step is the model-building or
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learning process and computes the sim ilarity between customers. This is ac

complished by computing a n n x n  sim ilarity m atrix S , where s ,j represents 

the proxim ity between customer i and customer j .  Proxim ity is typically mea

sured using either the correlation or cosine measure [119]. The neighborhood 

is then formed using one of several formation schemes, such as the center-based 

scheme [119].

•  Recommendation Generation. This component focuses on the problem of finding 

the top-N recommended products from the neighborhood of customers. There 

are several methods available for performing this step. For instance, the Most- 

frequent Item Recommendation technique performs a frequency count of the 

products for a ll neighbors, sorts the products by frequency, and then returns the 

N  most frequent products. Another method for generating recommendations 

is Association Rule-based Recommendation, which is based on a widely used 

technique in data mining, association rule mining. Association rule mining w ill 

be described in more detail later in this section.

Several companies offer web personalization products based on CF recommender 

systems, including Net Perceptions [104], Engage [136], and Macromedia (LikeMinds) [9]

While CF recommender systems have met w ith some success, there are also many 

lim itations associated w ith them. For instance, these systems rely on subjective rat

ings and require that a large number of users participate in the rating effort in order to 

have useful recommendations. In addition, the rating schemes are best suited for ho

mogenous product environments, such as books or CDs. For more complex products, 

such as computers or automobiles, rating schemes are more d ifficu lt to implement 

due to the large number of attributes associated w ith these products. S till another 

lim itation is that the recommendations that are generated from such systems are rel

atively static. In  other words, once a customer is associated w ith a neighborhood,
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that association remains fixed for some period of time, making it  d ifficu lt to capture 

changing behavior. Finally, as mentioned previously, CF recommender systems suffer 

from serious scalability problems.

6.2.1.2 Data Mining

Data mining techniques are also used in web personalization. The mining of the input 

data is typically done offline, since mining involves processing of extremely large data 

sets and is thus quite expensive. The ouput of the mining process, which is often in 

the form of rules which govern user purchasing behavior, is then used to personalize 

content.

Much of the work in this area focuses on discovering user navigation patterns from 

web logs for the purpose of serving targeted or personalized content [19, 129, 147]. 

This area is often referred to as web usage mining. In [35], a detailed description 

of data preparation methods for mining web browsing patterns is presented. [131] 

proposes a web mining usage tool.

While web server logs are commonly used for web usage mining, there are lim 

itations w ith these logs. In particular, browser caching and proxy servers make it 

d ifficult to identify user sessions in web logs. Most web browsers cache pages that 

have been requested. As a result, when a user hits the “back” button, the cached 

page is displayed and the repeat page access is not recorded in the web server log. 

Proxy servers provide an intermediate level of caching and create even more prob

lems w ith identifying site usage. In a web server log, a ll requests from a proxy server 

have the same identifier, even though the requests potentially represent more than 

one user. To address these issues, [122] takes the novel approach of placing a user 

profiler on the client side using a remote Java applet. The applet tracks all requests, 

thus providing more accurate browsing data.
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Much o f the work in web usage mining is based on fundamental work in data 

mining for association rules [5] and sequential patterns [6,132]. Since our online user 

interaction solution is also based on some o f these data mining techniques, we now 

provide an overview of some of these concepts.

Association rule mining is commonly used in e-commerce. The main objective 

of this technique is to find association rules between a set of co-purchased products. 

Essentially, this technique is concerned w ith discovering association between two sets 

of products such that the presence of some products in a particular transaction implies 

that products from the other set are also present in the same transaction. More 

formally, let us denote a collection of m  products {P L, P2, . . . ,  Pm} by V . A transaction 

T  C V  is defined to be a set of items or products that are purchased together. An 

association rule between two sets of products X  and Y , such that X . Y  C V  and 

X  f l Y  =  0, states that the presence of products in the set A' in the transaction T  

indicates a strong likelihood that products from the set Y  are also present in T. Such 

an association rule is often denoted X  ==» Y , where X  is the rule antecedent (RA) 

and Y  is the rule consequent Since association rules have largely been used in the 

context of supermarket purchasing analysis, these rules are often called market basket 

rules.

Association rule generation is controlled by two parameters: support and confi

dence. The support s o f a rule measures the occurrence frequency of the pattern in

the rule, while the confidence c is the measure of the strength of implication. For a 

rule X  => Y , the support is measured by the fraction of transactions that contains 

both X  and Y . More formally,

number of transactions containing X  U Y  .
5 — (38)

number o f transactions

In other words, support indicates that s% of transactions contain X  U Y . For a
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rule X  =>• Y , the confidence c states that c% of transactions that contain X  also 

contains Y . More formally,

number of transactions containing X u Y
c = ----------------------------------------------------------, (o9)

number of transactions containing X

which is nothing more than the conditional probability o f seeing Y , given that we 

have seen X .  W ith  association rules it  is common to find rules having support and 

confidence higher than a user-defined minimum. A rule that has a high confidence 

level is often very important, because it  provides an accurate prediction o f the outcome 

in question. The support of a rule is also important, since rules w ith very low support 

(i.e., very infrequent) are often uninteresting, since they do not describe sufficiently 

large populations, and may be artifacts.

A technique that is closely related to association rule mining is sequential pat

tern mining [6 , 132]. Whereas association rule mining is concerned w ith detecting 

the presence o f items w ithin a particular transaction, sequential pattern mining is 

concerned w ith not only the presence, but also the sequence o f items in a transac

tion. In the context of a retail application, for instance, a supermarket may order 

transactions by time of purchase. This ordering yields a sequence of transactions. 

For example, {milk, juice, cola}, [beer, diapers}, and {cookies, m ilk} may be such 

a sequence of transactions based on three visits of the same customer to the store. 

In sequential pattern mining, the support for a sequence S  is the percentage of the 

total number o f sequences o f which 5  is a subsequence [46]. Referring back to our 

example, {m ilk, juice, cola} {beer, diapers} and {beer, diapers} {cookies, milk} are 

considered subsequences. The problem of sequential pattern mining then is to find 

a ll subsequences from a given set of sequences that meet some specified minimum 

support.

We w ill elaborate further on this technique later when we describe the use of
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sequential pattern mining in our approach.

There are several personalization products on the market currently that utilize 

rules-based approaches. These products typically allow rules to be entered manually 

by users or to be generated by data mining techniques. Examples of such prod

ucts include Blue M artini Personalization [8 6 ], BroadVision One-to-One [135], and 

WebSphere Commerce Suite [39].

6.2.2 Customer Relationship Management Solutions

Another class of solutions related to online user interaction is customer relationship 

management (CRM) solutions. CRM solutions focus on managing the customer life

cycle by interacting w ith the customer across multiple channels (e.g., web, call centers, 

field, resellers, retail, dealer networks). Such solutions attempt to build customer loy

alty by collecting customer data and querying that data to generate responses. Several 

vendors offer CRM products, including Seibel Systems [127], PeopleSoft/Vantive [40], 

and N ortel/C larify [94].

One key difference between CRM and personalization solutions is that w ith CRM, 

responses are generated offline. For instance, an email or direct mail may be sent to 

certain customers based on their past purchasing behavior. Clearly, the impact of 

such delayed interaction is questionable in the context of the web, where competing 

sites are only a click away. Since such delayed interaction is not the objective of our 

work, we do not elaborate further on these solutions.

Having discussed related work in the areas of web personalization and CRM, we 

now turn our attention to a different aspect of user interaction: data models for user 

interaction.
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6.2.3 Data Models for User Interaction

The web has provided its users w ith  vast amounts of information, most of which is 

unstructured text contained in HTML documents. To be able to efficiently access 

this information requires a representation or model of the data. Early work in web 

data modeling focused prim arily on modeling the web as a whole for the purpose of 

searching the web. Notable pieces of work in this area include [87] and [81], both of 

which present web data models aimed at allowing declarative querying of the web as 

a whole for the purpose of enhancing search engines.

More recent web data modeling work has focused on modeling individual web sites, 

many of which are intended to improve web site design and management. Most of 

these web data models attempt to capture the relationship between the content, i.e., 

information displayed to the user upon request, and structure, i.e., the organization 

o f the site. We briefly discuss some of this work.

The model in [48] was developed to support new methods for the declarative 

specification of web sites. [48] presents a logical model of the content and structure of 

a web site in which the site structure is modeled as a schema, and a page on the site 

w ith a page schema. At run-time, web pages are created by accessing site content, 

stored independently in an underlying database management system, by means of 

declarative specification. The model in [12] also uses the notion of a page scheme 

to define the structure of a site. Rather than generating pages based on a schema 

(as in [48]), this model was developed to support deriving the structure of a page 

from HTML text, for the purpose of querying hypertext data and restructuring the 

query results into new hypertext. In [1 1 ], the authors model the organization of a 

web site w ith an object-oriented structure called a hypertree, and a set of functions 

that map actual pages (i.e., URLs) to the hypertree. The model presented in [102] 

presents a logical model of a web site’s structure, as well as a presentational model
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for web content, developed to support a hypermedia application development tool. 

[15] proposes a reverse engineering approach to generate schemas of a set of HTML 

or XML documents retrieved from a web site. These schemas specify the metadata, 

content, and structural properties of the web documents.

While all o f the above web data models capture the content and structure of a web 

site, a key aspect that is overlooked is user interaction with the site. User interaction 

w ith a site is a critical component of a web data model for e-commerce sites for two 

primary reasons:

1. Increased Web Site Complexity. Online user interaction technologies have 

increased web site complexity. In fact, the need to provide personalized content 

to users is a key driver behind the increased adoption o f dynamic page genera

tion technologies, such as Active Server Pages (ASP) [8 8 ] or Java Server Pages 

(JSP) [91]. These technologies generate web pages on the fly, in response to 

each user request. Pages are generated by running business logic (e.g., person

alization logic), which retrieves content from a variety o f sources (e.g., database 

systems). In this paradigm, the standard model of a web site as a set of pages 

no longer applies, since the space of possible dynamically generated pages is 

lite ra lly  infinite, given the virtua lly infinite content space.

2. Increased Web Site Functionality Requirements. Providing effective per

sonalization requires that e-commerce sites be able to relate context-sensitive 

web services (e.g., services that are cognizant of who a user is or what he is 

doing on the site) to internal data sources (e.g., information stored in customer 

profiles or purchase histories) in order to serve personalized web pages. E- 

commerce sites also require the ab ility  to discover user navigation patterns in 

order to improve site organization or discover new marketing opportunities.

These requirements are a ll dependent on the underlying representation of the web
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site, or the state of a user session at the site, or both. In short, these requirements 

reveal the need for a model of a web site that incorporates not only a representation 

that supports dynamic page generation, but also the notion of user interaction w ith 

the site.

One research work that presents a simple model of user navigation is [122]. This 

model is a graph-based model, referred to as a site connectivity graph. The nodes 

in the graph represent pages and the edges represent hypertext links. The model 

defines the notion of a user profile as the set of links of the user’s navigation and the 

corresponding link times. While this model is one of the first attempts to model user 

navigation, a key lim itation of this model is that it  assumes a static web site (i.e., a 

site in which all pages are predefined).

We are aware of one model in the literature that incorporates user interaction w ith 

a site and supports dynamic page generation [43]. This model supports the notion of 

a product catalog, user navigation over this catalog, and dynamic content delivery. 

Since our research is based on this model, we w ill describe this model in more detail 

in the next section.

6.3 Online User Interaction Preliminaries

In this section, we provide the necessary background concepts upon which our online 

user interaction solution is based. Specifically, we present the underlying data model 

and the important concepts o f action rules and dynamic profiles.

6.3.1 Site Interaction Model

We have chosen to use the site interaction model proposed in [43, 142] as the un

derlying data model for our online user interaction system. This model allows us to
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model an e-commerce site as well as the interaction o f users w ith such a site. Table 10 

contains the relevant notation.

Sym bol D escrip tion
Ni Navigation click on a link for i
Bi Buy item i
D Depart from the web site

CSL Clickstream length
RA Rule Antecedent
RC Set of Rule Consequents

Table 10: Table o f Notation

A key aspect of any e-commerce site (or, for that matter, v irtua lly any web site) is 

the product catalog. VVe view a product catalog as a labelled, directed, acyclic graph in 

which leaf nodes represent product instances (SKUs in retail lingo) and internal nodes 

represent various hierarchical groupings of products. Figure 18 shows an example of 

a hierarchical product catalog for a fictional online bookseller, Papyrus.com (the 

root node of the product catalog). The site sells several categories (i.e., internal 

nodes in the hierarchy) of books, e.g., Fiction and History. These categories are 

further divided into subcategories, e.g., Historical Fiction. Leaf nodes in the tree 

are products, (namely, books), e.g., A/,- (a specific Mystery book), HFj (a Historical 

novel), and B* (a Biography).

Papyrus.com

Fiction i History

Historical
FictionNtystery Biography

M, HF,M, HF,

Figure 18: Product Catalog Example
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A product catalog node is formally defined below.

Definition 1 Node. A node is a generalized, abstract structure which serves as the 

foundation for the catalog model. A node M  is defined as a 5-tuple (L , C, P, D, A) of 

descriptive information where:

• L is a unique label for the node, e.g., History.

•  C is a set o f child labels, e.g., the set of child labels for the Mystery node is 

{M i, . . . .  Mi} (i.e., books in the Mystery category).

•  P is a set o f parent labels, e.g., the set of parent labels for the Historical Fiction 

node is {Fiction, H istory}.

•  D is a descriptor for the node, containing pointers to objects needed to represent 

the node in HTML, e.g., links, images and text that describe a product (a leaf 

node in the product catalog). These objects are elements, i.e., atomic static 

items that can be displayed on a web page. There are three basic types of elements 

(based on [12]):

— An  information element is a text, audio, or video object. These objects 

can be drawn via queries from a variety o f data sources, e.g., an XML or 

database source.

— A link element is a hypertext link. These links have two parts: (A) a 

text description of the link destination, and (B) a reference to one of the 

following:

1. Another node in the product catalog (identified by its label).

2. An informational page (i.e., online help, company information, cus

tomer service information, etc.), or

3. An external (i.e., outside the e-commerce site) URL.
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-  A form element is a portion of a form for user entry. Form elements 

are collected into forms, which are used to facilitate user information entry 

(e.g., credit card information, customer service requests, etc.).

For example, the descriptor for node Mi, a specific Mystery book, might 

contain a pointer to a text element containing the book’s title and a pointer 

to an image element containing a picture of the book jacket, as well as 

links to the node’s parent (i.e., the Mystery node), and links to other nodes 

representing mysteries by the same author.

-  A is a set of permissible actions on the node. .4 C A , where A  is entire 

space of possible actions on a product catalog. Six possible actions are 

defined on a catalog:

1. A navigation action is simply a click on a navigational link. For 

example, i f  user U is at the home page of an online bookseller (say, 

Papyrus.com in Figure 18), and wishes to see more information about 

Fiction, he would undertake this navigation action by clicking on the 

Fiction link.

2. A buy action is a click indicating the user’s intention to buy an item. 

On an e-commerce site, this occurs when a user chooses to place an 

item in his shopping cart. Clearly, this action is available only from 

nodes which offer items for purchase. Further, an item is only avail

able for purchase from the node that represents it, e.g., the action of 

purchasing Mystery Mi is only available from node Mi.

3. An un-buy action occurs when a user removes an item from his shop

ping cart, in effect undoing a previous buy action. This action is 

available at any point after the user has selected an item for purchase.

4- A check-out action occurs when a user completes the purchase of
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the items in his shopping cart, thereby actually creating a purchase 

transaction in the system. This action is available at any point at 

which the user has at least one item in his shopping cart.

5. A fo rm -subm it action sends user-entered information to the web 

server. This type of action can be optional (e.g., a user can choose to 

respond to a survey), or mandatory (e.g., the user must enter credit 

card information and a shipping address in order to complete a check

ou t action, or enter a logon and password to enter a protected site).

6. A departure  action occurs when a user departs from the site. Note 

that an e-commerce site’s web server cannot explicitly detect a user’s 

departure, since the HTTP request goes to another site’s web server. 

Typically, a user is considered to have departed a web site after some 

threshold amount o f time has elapsed since his most recent click, and 

thus, departure can be inferred.

An important feature of this model is that it  supports the notion of dynamically 

generated web pages. As discussed already, we can think of a user navigating through 

an e-commerce site as a user navigating over the product catalog, since the web pages 

are simply presentations o f different views over the product catalog. Thus, a user 

can be said to be located at some node in the product catalog throughout his visit 

to the site. In particular, after the user’s itlx click, he is said to be located at the 

node pointed to by the link chosen in his ith click. Thus, if  the user is located at the 

Fiction node before his ith click, and chooses the link to Historical Fiction as his ith 

click, then after the ith click he is at the Historical Fiction node.

Based on this notion, user interaction w ith the site is modeled as a sequence of 

actions called a clickstream. For example, a clickstream modeling a user navigating 

from the root of the Papyrus.com product catalog (shown in Figure 18) to book HFz,
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purchasing HF$, and then departing from the site might consist of the following 

sequence: (Npapyrus.comi ^Fictioni istoricaiFiction •. N p Fj) £)), where iV; denotes

navigation to node i, Bj denotes buying item j ,  and D denotes departure from the 

web site.

As w ill become clear in subsequent sections, this model w ill enable us to easily 

represent user behavior on an ecommerce site, providing a solid foundation for our 

online user interaction solution. For further details regarding this site interaction 

model, refer to [142].

Having described the underlying data model, we now discuss the notion of dynamic 

profiles and action rules, which are based on this site interaction model.

6.3.2 Dynamic User Profiles

An essential component of a true online user interaction system is the ability to 

generate dynamic profiles, rather than static profiles. Generating dynamic profiles 

requires being able to anticipate what a user is likely to do, across several dimensions, 

e.g., which pages a user is likely to access, which product categories he is likely to 

navigate, and when he is about to leave. A dynamic profile of a user is simply a 

collection of information that provides a prediction of what the user’s next action is 

likely to be. Before formally defining a dynamic profile, we first introduce the notion 

of action rules.

Action rules enable us to capture user behavior at fine granularities. In our on

line user interaction solution, we are interested in predicting what action a user w ill 

perform, based upon his current visitation clickstream, i.e., a sequence of actions. 

A clickstream representing a user’s entire visit at a site is referred to as a session. 

We track users as they visit the site and log the session information. Owing to re

cent concerns over online privacy as well as a preference for keeping our strategies
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as general as possible, we consider anonymous users in this paper. In  other words, 

users are identified only be a session id while visiting the site, and no user-specific 

information is maintained between user visits. Clearly, since we collect only traces 

of users’ sessions through the site, we do not cluster users in the traditional sense. 

Rather, users who behave sim ilarly can be treated similarly, resulting in a much more 

fine-grained interaction between a user and the site than is possible w ith technologies 

based on static profiling.

Note that session tracking is well understood technologically [19, 129, 122]. In 

order to record the most comprehensive tracking information, the session tracking 

that we w ill use in our solution is based on client-side tracking [1 2 2 ] as described 

previously. This approach involves sending a small Java applet to the browser to 

track user actions. Regardless of the technique used to create the session logs, the 

logs are mined to extract the action rules, which are of the form

Action^, Action?, ...ActioncsL —► Actionr; confidence = C and support = S

where Actiont- is a user action on the site (e.g., navigation, purchase, departure) and 

C SL  is the (configurable) maximum clickstream length. These rules can be generated 

using standard sequential pattern mining tools (e.g., IBM ’s Intelligent Miner [38]). 

The result of the mining process is a set o f sequential patterns of the type shown 

above. The antecedents of the rules have maximum length CSL, and correspond to 

certain minimum confidence and minimum support thresholds.

We now present a simple example to illustrate how session logs are mined to extract 

action rules. Consider the session data shown below, which is based on Figure 18.
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(Npapyrus.com! NFiction» Npis torical Fiction, BpFi! D)
(Npapyrus.com! NFiction> Np is torical Fiction i Np p, • BpF%! D)
(Npapyrus.comi NFiction-, Npi3t0ricalFictiom Npp 11 B)
(NPapyrus.com> Nffistory-i Npi0graphy-i Ng l , D)
(NPapyrus.com, NHistoryt NBiography! Ng2, Bg2, D)
(Npapyrus.comi Npictian! Np is torical Fiction > Npp, , Ap is torical Fiction > Npiction > -0)

Applying sequential pattern mining to this dataset and assuming a CSL o f 3, some 

of the action rules that would be produced are shown in Table 11.

R A Consequent
Npapyrus.com! Npictiom Npi3toricalFiction NpFu 0.75
Npapyrus.com! Npictiom NHistorical Fiction Nhf2, 0.25
Npapyrus.com! Npi3tory, Ngioqraphy iVSl,0.5
Npapyrus.com! Npi3tory. Ngi0gTaphy NBi, 0.5

Table 1 1 : Example Action Rules

As the table shows, the first rule has the highest consequent probability, 0.75, since 

3 out of 4 of the sessions having sequence (Npapyrus.com , i\>Ict:on, N p u to r ic a iF ic tio n ) are 

followed by action N pp^  This rule predicts that a user who has navigated from 

“Papyrus.com” to “Fiction” to “Historical Fiction” w ill navigate to the book HF\ 

w ith probability 0.75 (assuming that the minimum support threshold has been met).

Having described action rules, we now present the definition of a dynamic profile 

(as defined in [142]).

D e fin itio n  2 A  P ro file  is a 2-tuple (R A , RC) of information where:

1. RA is a rule antecedent, i.e., a user clickstream of length CSL.

2. RC is a set {c i, C2 , ..., c*} of rule consequents Ci, where each Ci is itself a 3-tuple 

(A ,L ,p) where:

(a) A is an action.
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(b) L is a node label.

(c) p is the conditional probability of the consequent, given the antecedent.

Having described the structure of a profile, we now provide an example to make 

the above discussion more concrete. Consider the situation where our user Bob has ar

rived at the Papyrus.com home page, and has chosen the links for “Fiction” and “His

torical Fiction” , in that order. Based on this clickstream, i.e, {Npapyrus.com, Npiction, 

NHistorical Fiction) i the system might find the following rules in the rule warehouse 

whose antecedent corresponds to the current visitation clickstream:

1 . N papyrus,canj, N Fiction, NHistorical Fiction -> N HF3 w ith probability =  40

2. N p apyrus.com, NFiction, N p i3 torical Fiction - *  N HFa w ith  p ro b a b ility  =  20

AflteecdeflC

^  Np3pyna.c0m ^ R c a a  ^H ls tonca l F k u o n ^

CxaequeMc
Piobability»U)

N k p  ProtwbUtty«20

Figure 19: Dynamic Profile Example

These rules suggest that Bob w ill navigate to the node representing £TF3  with prob

ability 40%, or to the node representing H F\ w ith probability 20%. The contents 

of Bob’s dynamic profile at this point are shown in Figure 19. The profile contains 

the rule antecedent, i.e., Bob’s current clickstream, as well as the two matching rule 

consequents.

Our online user interaction system uses rules of this type to generate hints or re

sponses about a user’s next action, thus enabling a site to perform a variety of content 

customization. The rules are stored in a rule warehouse, which we w ill describe in 

detail in the next chapter.
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Chapter 7

Design of the Rule Warehouse

In this chapter, we describe the design of the rule warehouse. We begin the chapter 

by discussing the semantics of the data contained in the rule warehouse. This is 

followed by a discussion of the logical and physical design o f the warehouse. Finally, 

we present a comparative analysis of alternative designs for the rule warehouse.

7.1 Rule Warehouse Semantics

The rule warehouse contains a set of configurable length action rules, which are cre

ated as a result of the mining process described in the previous chapter. These rules 

are ultim ately used to make a critical run-time decision for ecommerce sites: which 

content to present to a user. A rule consists o f a rule antecedent (R A ) and a rule 

consequent. An RA  consists of a set of actions or behaviors {A l? A2, . . .  A c s l}, where 

C SL  is the clickstream length, and a rule consequent consists of a consequent action 

.4C, consequent node iVc, and a probability p, where p is the confidence of the rule, 

i.e., the conditional probability of the consequent, given the antecedent.

Each time a page request is made at a web site, the rule warehouse must serve 

certain information. Consider our example from Chapter 6 , where our user Bob has 

arrived at the Papyrus.com home page, and has chosen the links for “Fiction” and 

“Historical Fiction” , in that order (based on the product catalog in  Figure 18). When 

Bob requests the “Historical Fiction” page, his current clickstream is (iVpapynis com,
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N.Fiction, N HistoricaiFiction) ■ An ideal online user interaction system would take this 

representation of Bob’s current behavior at the site (i.e., RA) and find a ll matching 

behaviors (i.e., rule consequents) in the rule warehouse. This information could then 

be used by the site to determine what content to serve Bob.

Thus, for each page request at an e-commerce site, the task of the rule warehouse 

can be stated as follows: Given an RA, find all matching rule consequents. In other 

words, given some behavior signature (e.g., configurable length clickstream), find all 

matching behaviors and their respective probabilities. Note that this query may re

trieve a large set of matching consequents. Once the consequents are retrieved, the 

site must process them and make a content delivery decision. This processing must 

be done w ithin sub-second time frames in order to provide acceptable end-to-end re

sponse times to site visitors. Thus, it is desirable for a site to be able to control the 

number of matching consequents that are returned for each request. Clearly, the site 

w ill want to retrieve the most useful consequents - those having higher consequent 

probabilities. Even though a site may control the number of matching consequents 

retrieved by tuning the minimum support in the data mining process, this type of 

tuning can only be done at the frequency w ith which the data mining process runs. 

Thus, a site should have the ab ility  to easily configure the number of useful conse

quents returned for a given request. This configuration can be easily accommodated 

by modifying the request to the rule warehouse to incorporate a minimum thresh

old for the consequent probability: Given an RA , find all matching rule consequents 

having a consequent probability p greater than some minimum threshold t. The RA, 

combined w ith the set of matching rule consequents {RC) retrieved, constitutes a 

dynamic user profile, as defined in Chapter 6 .

Our discussion thus far has focused on the representation of action rules, which 

represent navigational data. In addition to navigational data, personalization systems 

may use other types of input data such as keywords or item attributes and purchase
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histories [121]. Sites may use keywords or item attributes to model the customer’s 

current interests. For instance, an online bookstore may discover an association be

tween the Science Fiction and Romance categories, and use this association to provide 

recommendations. Thus, when a site visitor performs a keyword search for Science 

Fiction titles or navigates to a Science Fiction page, the recommendation system may 

suggest titles from the Romance category. This type of input data can easily be repre

sented as a rule, where the RA  consists of a set of attributes [A ttri, A ttr i, . . .  Attrn}, 

and the rule consequent is as defined previously. Purchase histories may also be used 

as input to personalization systems. Purchase histories can be represented as mar

ket basket rules, as described in the previous chapter. Such a rule would have the 

form RA  =>• consequent, where the RA  consists of a set of items that have been 

purchased by a particular customer { P i,P i,. . .P m}, and the consequent is as defined 

previously.

7.2 Logical Design of the Rule Warehouse

We now discuss the logical design o f a warehouse to capture the semantics of action 

rules described in the previous section. We use the relational model to describe the 

logical design, since it is a widely accepted data model. We also use a star schema 

representation, a widely used design approach in data warehousing. Recall that a 

star schema typically consists of a single fact table and a dimension table for each 

dimension. The fact table contains foreign keys to each dimension table, along w ith 

the actual metric data. Refer to Chapter 2 for more details on the star schema design 

approach.

We now discuss why a a star schema is an appropriate design approach in the 

context of the rule warehouse. There are essentially two parts to a rule: the rule 

antecedent and the rule consequent. As mentioned previously, the task of the rule
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warehouse is to find a ll matching rule consequents given a rule antecedent. Thus, the 

rule consequent can be considered to be the metric data. Recall that a rule antecedent 

consists of a set of action-node pairs. Each action and node w ill likely have associated 

w ith it  a descriptive label (e.g., the “Navigate” action label, the “Historical Fiction” 

node label from the product catalog in Figure 18) and possibly other information. 

However, storing this descriptive information with every occurrence of every action 

and node w ill be wasteful. Rather, we can use surrogate values for the actions and 

nodes, and store the descriptive information in smaller tables, i.e., dimension tables. 

Thus, in the context o f the rule warehouse, a rule maps to a fact, and any associated 

descriptive information maps to a dimension.

Figure 20 shows one possible schema to represent rules. This star schema consists 

of a RULES fact table and two dimension tables, ACTIONS and NODES, which contain 

descriptive labels for the actions and nodes, respectively. Each record in the RULE 

table consists of an R A  and a consequent. We assume that an RA  has some maxi

mum length n, and so an RA  consists of a set of at most n action-node pairs. The 

consequent consists of a consequent action-node pair and a consequent probability. 

We assume each of these columns can be represented as a 4-byte integer. Foreign 

keys are defined on the consequent action and node columns so that the action and 

node labels can be retrieved for each rule warehouse request.

fati—re < bftti 
U M l  15 b y t t i

A c t Is a l  
H odal 
A c t io n *  
Nodal

4 0?t a i  
4 b y ta t  
4 b y t a t  
4 b y ta a

A c t io n *
Code*

4 b y ta t  
4 b y ta t

A c tio a C
M daC
f t o 6c01 i . l t ?

4 b y ta t  
4 b y ta t  
4 b y ta t

OtdtXD 4 b y ta t
U b a l SS b v ta t

99 b y ta t

- ru»m » -  U t  h t o  

U U t t a t t . Key AU iba it 

A t t r i b u t e  Sow U y A anbuM

Figure 20: Action Rules Schema 
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Given the above schema, we now discuss the query that would be used to retrieve 

the matching consequents. Let C S  = <  Actioni, Action^,. . .  ActioncsL > represent 

the clickstream for a given user for whom we want to find all matching consequents, 

and let minProbability be the minimum threshold probability. Since this query is

used to create a dynamic user profile, we w ill refer to this query as a profile query.

One of the inputs to the profile query is the clickstream, which are not known until 

run-time. We use the following notation to represent an action i that is part of 

clickstream CS: _CS.Actioni. The profile query (PQ) is shown below:

SELECT A.Label, N.Label 
FROM RULES R, ACTIONS A, NODES N 

WHERE R.ActionC = A.ActionlD AND R.NodeC = N.NodelD 
AND -CS_Actionl = R.Actioni AND _CS_Nodel = R.Nodel
AND _CS_Action2 = R.Action2 AND -CS_Node2 = R.Node2
AND . . .
AND -CS-ActionCSL = R.ActionCSL AND .CSJTodeCSL = R.NodeCSL 
AND R.Probability > minProbability

The PQ is a 3-way jo in query on the RULES, ACTIONS, and NODES tables w ith 

a range restriction on minProbability and point restrictions on the ActionID  and 

NodelD columns. One feature that is evident in this query is the potentially large 

number of point restrictions. The exact number of point restrictions depends on 

the clickstream length, CSL. In  practice, C SL  is expected to be fairly small (e.g., 

between 2 and 5). However, even in this range, this results in  anywhere between 4 and 

10 point restrictions (since there are 2 x C SL  such restrictions). When one considers 

the potential overhead in indexing these columns, the cost can become prohibitive 

(we w ill discuss this cost in greater detail in the next section).

To address this issue, we discuss an alternative design. I f  we could map every RA  

to a unique string of some maximum fixed length, then a single column could be used
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to represent an RA. Then the PQ would only require a single point restriction. This 

design is possible by applying the MD5 algorithm [114] to each RA  to generate a 

unique string. MD5 is a message-digest authentication algorithm developed by RSA, 

Inc. The algorithm takes as input a message of arbitrary length and produces as 

output a 128-bit ’’ fingerprint” or ’’message digest” of the input. It  is conjectured that 

it is computationally infeasible to produce two messages having the same message 

digest, or to produce any message having a given prespecified target message digest. 

Thus, un til two messages are produced having the same message digest, collisions are 

not an issue. The MD5 algorithm is intended for digital signature applications, where 

a large file must be ’’ compressed” in a secure manner before being encrypted w ith a 

private (secret) key under a public-key cryptosystem such as RSA. MD5 is designed 

to be quite fast on 32-bit machines, does not require any large substitution tables, 

and can be coded quite compactly. Furthermore, since MD5 is a hashing algorithm, 

it has constant time complexity. For these reasons, MD5 meets our requirements. 

The alternative design based on the MD5 hash is shown in Figure 21.

m

Figure 21: Alternative Action Rules Schema

If  we let .CS-RA  be the MD5 hash value for clickstream C S  (determined at run

time), then the PQ for this design is shown below:
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SELECT A.Label, N. Label 
FROM RULES R, ACTIONS A, NODES N 

WHERE R.ActionC = A.ActionID AND R.NodeC = N.NodelD 
AND _CS_RA = R.RA 
AND R.Probability > minProbability

While the MD5 alternative can reduce the storage and query cost, it  is not as 

flexible in terms of the queries supported. In particular, i f  it  is necessary to support 

partial matches on RAs, then this approach becomes problematic. One possible 

solution is to maintain an additional mapping table containing the set of n action- 

node pairs keyed by RA. This approach would obviously introduce some overhead in 

terms of storage, query processing, and insertion. For our purposes, we w ill assume 

that partial matches on RAs are not required.

7.3 Physical Design of the Rule Warehouse

In this section, we discuss the physical design o f the rule warehouse. This discussion 

w ill be based on the logical design strategies presented in the previous section. To 

simplify the discussion, we refer to the two logical design strategies as Logical Design 1 

(LD 1 ) and Logical Design 2 (LD2), where LD I refers to the design in Figure 20 and 

LD2 refers to the hash-based design in Figure 21. For each logical design, we first 

discuss the physical design using a conventional RDBMS. We then map the relational 

design into an appropriate Datalndex representation (refer to Chapter 3 for a review 

of Datalndex physical design strategies).

In conventional relational database systems, index structures are typically defined 

on columns that are accessed to perform restrictions (restriction columns) and joins 

(foreign key columns), and on columns that are displayed (projection columns). Thus, 

to answer the PQ most efficiently, a conventional relational design would advocate 

that index structures be maintained on the restriction and projection columns and
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that jo in  indexes be defined for the foreign key columns. Thus, we assume that the 

conventional design for LD1 w ill have bitmapped indexes defined on the restriction 

columns (the N  A ction and Node columns and P ro b a b ility  column in the RULES 

table) and on the projection columns (A ctions.Label and Nodes.Label). We also 

assume that bitmapped jo in  indexes (BJIs) are defined on the foreign key columns 

(Rules.ActionC and Rules.NodeC).

There are multiple Datalndex representations for any conventional design, since we 

can choose to store multiple columns in a single BDI. We first discuss the dimension 

tables, followed by the fact table. For dimension tables in general, each column 

is stored as a separate BDI unless it can be determined that certain columns w ill 

most often be accessed together. Thus, for LD1, we would store A ctions.A ctionID , 

Act ions. Label, Nodes.NodelD, and Nodes.Label as separate BDIs. Since each of 

these tables has only a single result column, the key and result columns w ill be 

retrieved together. Thus, we can actually store each of these tables as a single BDI. 

For the fact table, each of the foreign key columns (Rules .ActionC and Rules .NodeC) 

is stored as a JDI. Each of the remaining columns w ill be stored as separate BDIs. 

Note that no real benefit can be gained by storing any of these columns together since 

these are a ll restriction columns, and evaluating a restriction using BDIs requires 

scanning the entire BDI. Thus, all blocks for the restriction columns must be loaded 

to evaluate restrictions, regardless of whether they are stored contiguously.

For LD2, the conventional design w ill have bitmapped indexes defined on the re

striction columns (Rules .RA and Rules .P ro b a b ility ) and on the projection columns 

(A ctions.Labe l and Nodes.Label). As in L D l, BJIs w ill be defined on the foreign 

key columns (Rules.ActionC and Rules.NodeC). The Datalndex representation for 

LD2 w ill be the same as L D l, except that the fact table has fewer BDIs: a single BDI 

for Rules .RA w ill replace the BDIs for the iV pairs of A ction and Node columns.
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7.4 Comparative Analysis

We next perform an analytical evaluation o f the design strategies proposed in the 

previous section. The design strategies are evaluated based on query processing cost 

using the expressions derived in Chapter 4. In an online user interaction environment, 

query processing cost is the most important criteria, since queries must provide inter

active response times. Thus, as in the previous analyses in Chapter 4, the metric used 

is the number of blocks accessed to evaluate the query, A^ar- We w ill also discuss 

storage cost since it has a direct impact on query processing cost. Finally, we w ill 

also compare the approaches based on memory requirements.

The parameter settings used in this analysis are, for the most part, the same as 

those used in the cost comparison in Chapter 4 (refer to Table 7). The parameter 

settings that are unique to this analysis (e.g., column widths) are shown in Table 12.

Parameter Description Value
\V\ Number of dimensions tables involved in join 2
\Cf \ Number of fact-table columns that contribute to the 

join result
0

| RULES | Number of records in RULES fact table 1,000,000 x 
scale factor

|ACTI0NS| Number of records in ACTIONS dimension table 20
| NODES | Number of records in NODES dimension table l,000x scale 

factor
tu(ActionlD) Column width of ActionID, in bytes 4
w(NodelD) Column width of NodelD, in bytes 4
u;(Label) Column width of Label, in bytes 55
^(P robability Column width of Probability, in bytes 4
tt/(RA) Column width of RA, in bytes 16
to (RULES) Table width, in bytes 36
to(ACTIONS) Table width, in bytes 59
w(NODES) Table width, in bytes 59

Table 12: Parameters used in the Analysis

Sim ilar to the analyses presented in Chapter 4, we vary the size of the database
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while holding the other parameter values constant. More specifically, we vary the 

number of nodes from 1,000 to 1 m illion. This range was chosen to represent the 

size of a typical e-commerce catalog site, where the number o f nodes depends largely 

upon the number of products in the catalog. The number of products in a large 

e-commerce site is typically in the range of ‘200,000 to 1 m illion. For instance, the 

Amazon.de store contains 200,000 CDs, while the Amazon.co.uk book store contains

1 . 2  m illion British titles [8 ]. The number of rules that a site may generate depends on 

the number o f paths that can be traversed in the site, which in turn depends on the 

number of nodes. Based on our range for the number o f nodes, we vary the number 

of rules from 1  m illion to 1  billion. Since the number of actions is quite small, the 

size of this table is held constant. The total size of the raw data ranges from about

0.040 GB to about 40 GB.

In this analysis, we compare the conventional design to the Datalndex design. For 

the conventional design, we assume that the bitmapped index/BJI approach is used 

to evaluate the query. For the Datalndex design, we assume that the SJL algorithm 

is used to evaluate the query. For the baseline case, we assume the Logical Design 1 

(L D l) strategy presented in the previous section.

7.4.1 Baseline Case

The resulting plots for L D l are shown in Figure 22. (Note that, unless stated oth

erwise, a ll plots in  this section are displayed using a log scale for both axes). VVe 

first discuss the query processing costs shown in Figure 22(a). A ll three curves shown 

exhibit a sim ilar pattern - the cost or number of block accessess increases as the size 

of the database increases. As the figure shows, the SJL approach outperforms the 

other two approaches over the entire range. We first discuss the relationship between 

the uppermost curve (BJI) and the lowermost curve (SJL) curve. When the database
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size is small (e.g., 1 m illion rules), SJL provides about a 10 times improvement over 

BJI (about 5,000 block accesses for SJL and about 50,000 accesses for BJI). This per

formance improvement increases as the size of the database increases. For instance, 

when the number of rules is increased to 1 0  m illion, the difference is about 2  orders 

of magnitude. A t 1 billion rules, the difference is about 4 orders of magnitude.
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(a) Query Processing Cost (b) Storage Cost

Figure 22: Cost Comparison for Baseline Case

The query cost in both approaches is dominated by the rowset creation cost, which 

requires loading the indexes for the 7 restriction columns. For the BJI approach, this 

cost is especially high due to the large size of the bitmapped indexes. As it turns out, 

for this approach, it  is less expensive to scan the table than to load all o f the indexes. 

The query cost for the BJI approach using a fu ll table scan is shown as the curve 

labeled “BJI-FS” . While this method provides improvement over the BJI approach, 

its performance s till does not approach that of the SJL approach.

Figure 22(b) shows the storage costs (in GB) for the two approaches. The size 

o f the Datalndexed rule warehouse (labeled “DI” in the figure) is approximately the 

same as the size of the raw data. The size of the warehouse based on the conventional 

design, however, is significantly larger, owing to the high cost o f storing bitmapped
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indexes for the restriction and projection columns (9 columns in total).

7.4.2 Sensitivity to Warehouse Design

We now examine the sensitivity of the two approaches to a change in the design of the 

rule warehouse. More specifically, we examine the impact of using the Logical Design 2 

(LD2) strategy presented previously. The plots for LD2 are shown in Figure 23. 

Note that the cost to run MD5 is not included here due to the fact that it does not 

contribute to I/O  cost. We first discuss the query processing costs for the LD2 design, 

which are shown in Figure 23(a). The overall shape of the curves for LD2 remains the 

same as for L D l, and again SJL outperforms BJI over the entire range. For LD2, the 

performance difference is not quite as large, but it  is s till substantial. For instance, 

when the database size is small (e.g., 1 m illion rules), SJL provides about a 4 times 

improvement over BJI (about 4,000 block accesses for SJL and about 18,000 accesses 

for BJI). When the number of rules is increased to 10 m illion, the difference is about 

an order of magnitude, while at 1 billion rules, the difference is about 3 orders of 

magnitude.
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Figure 23: Sensitivity to Warehouse Design
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We now discuss the impact of the design change. The BJI approach is clearly 

much more sensitive to this design change than the SJL approach. On average, the 

effect of changing the design from L D l to LD2 was to reduce the number of block 

accesses by about 70% for BJI. For SJL, the number of block accesses was reduced by 

about 20% on average. As mentioned previously, this phenomenon is a result of the 

large number o f blocks that must be accessed in the restriction phase. By reducing 

the number of restriction columns in LD2, the number of data blocks that must be 

loaded is reduced. The BJI approach accesses significantly more data blocks than 

SJL, and thus realizes a greater reduction in block accesses as a result of the design 

change.

Figure 23(b) shows the storage costs (in GB) for the two approaches. As this 

figure shows, storage costs for the conventional design are much more sensitive to the 

design change than for the DI design. In fact, the design change results in about 

an 80% reduction in storage requirements for the conventional design, and about a 

20% change for DI, on average. This result is easily explained. For both D I and 

the conventional approaches, the change results in a reduction of 8  bytes for every 

record in the RULES table. For the conventional design, the change also results in a 

reduction in the size of the index structures. Specifically, where there were originally 

bitmapped indexes defined on the 6  point restriction columns in L D l, there is now a 

single bitmapped index on the RA column in LD2. For the D I approach, there is no 

other impact on storage requirements since there are no additional index structures.

7.4.3 Memory Requirements

We now compare the memory requirements for the design alternatives. As shown 

in Figure 24, there is not much difference in the memory requirements for the two 

approaches, although SJL is slightly more efficient. This is due to the fact that the
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Figure 24: Comparison of Memory Requirements

width of the dimension table display BDIs (ACTIONS.Label and NODES.Label) are 

wide w ith respect to the table size. In fact, recall that the BDIs are the same width 

as their respective tables since we are storing these tables each as single BDIs. S till, 

for both approaches, the memory requirements are not substantial. For instance, the 

maximum database size (1 billion rules) requires only 55 MB o f memory for SJL and 

59 MB for BJI. Note that the memory requirements are the same for L D l and LD2. 

This is due to the fact that the design change only impacts the fact table, and as 

Result 1 in Chapter 4 indicates, the size of the fact table does not impact memory 

requirements.
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7.4.4 Discussion

As the foregoing analysis shows, the Datalndex approach represents an extremely 

efficient alternative for the storage and retrieval of rules, and thus satisfies a key re

quirement for an online user interaction solution. The Datalndex approach strictly 

outperforms the conventional approach in terms of query processing costs, storage 

costs, and memory requirements, and in most cases by significant margins. We have 

also compared two Datalndex design alternatives, LD1 and LD2, to represent rules. 

Our analysis shows that LD2 is preferred over the LD1 strategy from a performance 

standpoint, since LD2 has lower query processing and storage costs than LD1. How

ever, i f  it  is necessary to be able to perform partial matches on RAs, then the LD1 

approach may be preferable.

In this chapter, we have provided a detailed discussion of the design of the rule 

warehouse. In the next chapter, we describe the architecture of an online user inter

action solution and discuss the role o f the rule warehouse in this solution.
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Chapter 8

Online User Interaction System 
Architecture

In this chapter, we present the technical details of an online user interaction system. 

We w ill refer to this system as the Online User Interaction Server (OUIS). We have 

incorporated our Datalndex technology (described in Chapters 3 through 5) into the 

rule warehouse component of this solution. Thus, we w ill focus on the role of the rule 

warehouse module in the overall architecture. We begin by providing an overview of 

the system architecture, followed by a detailed description of the system components.

8.1 System Architecture Overview

The OUIS is a component-based system which works w ith readily available web server 

and e-commerce application server systems. Figure 25 shows a graphical depiction of 

an “end-to-end” e-commerce system architecture, including the OUIS component.

The functionality of the system is best described using an example. Consider a user 

Bob, who clicks in an e-commerce site that utilizes OUIS technology. This causes an 

HTTP request to be sent to the Web/application server (WAS). (Note that, although 

the application and web servers are typically separate components, we describe them 

as a single component here for convenience). When the WAS receives an HTTP
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Figure 25: Online User Interaction System Architecture

request from Bob, it forwards Bob’s click information to the OUIS. Upon receiving this 

information, the OUIS performs two tasks. First, the OUIS updates Bob’s clickstream. 

Second, the OUIS generates a hint. A hint is simply a set of action-probability pairs, 

which represent actions Bob is likely to take, along w ith the corresponding probability 

that Bob w ill choose the action, given his current clickstream. These are drawn from 

the action rules described previously, where a hint consists of a set of rule consequents 

matching a given R A  (i.e., clickstream).

When the WAS receives a hint from the OUTS, it uses the hint to generate a 

customized web page for Bob. Precisely how the WAS uses the hint to generate a 

personalized web page for a user is dependent on the needs of the web site, and is 

outside the scope of this dissertation. Typically, the WAS runs a set of scripts that 

describe how a web page should be generated in different situations. In an OUIS- 

enabled system, these scripts include business logic to handle OUIS hints.

We now provide an example to illustrate the use of hints. Consider the case 

where our user Bob has navigated, through the sequence o f product catalog nodes,
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(Fiction, Thriller, LegalThriller). Further assume that upon Bob’s click on the 

LegalThriller node, the OUIS returns a hint to the WAS, suggesting that Bob is 

highly likely to be interested in fusion jazz, based on his recent behavior. As a result, 

the business logic in the WAS scripts may send Bob a web page offering a discount on 

selections from the Fusion Jazz category of its online music store. Continuing w ith 

this example, suppose that Bob has navigated through several more product catalog 

nodes, but has s till not purchased anything. In this case, on Bob’s next click, the 

OUIS may return a hint to the WAS, suggesting that there is a high likelihood that 

Bob w ill depart in his next click, given his current clickstream. A t this point, the 

business logic in the WAS scripts might send Bob a web page that includes a special 

offer, perhaps free shipping or a percentage discount on his order, to entice him to 

stay at the site and continue shopping.

In addition to the above interaction, each user click causes a client-side Clickstream 

Monitor to send user session (i.e., click) information to the OUIS, where it  is stored 

in the Session Log for later use in updating the rulebase. (Note that this interaction 

is entirely separate from the user’s interaction w ith the WAS). The CM module is 

essentially a client-side Java applet that sends clicks (including client-side cache hits) 

to a server, as described in, say [122]. This method of tracking session information 

allows the OUIS to obtain a complete account of a user’s actions at the site, including 

those requests served by a client-side cache. Since the information stored in the 

Session Log is used for refreshing the rulebase (an offline operation), there is no 

requirement for this interaction to occur in real time.

Having described the interaction between the main components (i.e., the WAS and 

the OUIS) of the system, we now provide a detailed description o f these components.
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8.1.1 Web/Application Server

The OUIS works in conjunction w ith existing web servers (e.g., Apache, Netscape) 

and e-commerce application servers (e.g., BEA’s YVebLogic or IBM ’s WebSphere) to 

provide the functionalities we have described. When the WAS receives an HTTP 

request from a user, it  forwards the user’s clickstream information to the OUIS, 

signalling the OUTS to generate a hint. The OUTS responds w ith a hint, which 

is sent to the Page Generator module of the WAS. The Page Generator generates 

a personalized page for the user, by integrating content from various sources and 

formatting the content as necessary (e.g., into HTML pages). Page content is drawn 

from various sources, including the Product Catalog (which stores product information 

in hierarchical format as well as detailed information about each product), a store 

of static content (i.e., content not associated w ith a particular product catalog node, 

e.g., a corporate logo), and a server cache. Communication between the OUIS and 

WAS follows a client-server paradigm, i.e., the WAS requests hints from the OUIS, 

and the OUIS provides hints in response.

8.1.2 The Online User Interaction Server Components

The OUIS consists of two main components: (1 ) the Profiler and (2) the Rule Ware

house. We next provide an overview of each of these components and their interaction.

The Profiler is essentially a caching module and consists of three components: (I)  

a Clickstream, Cache, which stores current clickstream information for each user in 

the system, (2) a Profile Cache, which stores recently-used profiles, and (3) a Profile 

Manager, which generates hints for the WAS.

We return to our example to illustrate the mechanics o f the hint-generation pro

cess. Consider a situation where the WAS has submitted a hint request to the OUIS 

for Bob’s ith click. The Profile Manager first checks the Clickstream Cache to find
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Bob’s previous clickstream ( if any), and updates that to include Bob’s latest reported 

action. A fter determining Bob’s current clickstream, the Profile Manager checks the 

Profile Cache for rules matching Bob’s clickstream (i.e., a profile whose R A  matches 

the observed clickstream). I f  such a profile is found, the Profile Manager generates a 

hint from it, and sends the hint to the WAS. If, at this point, another user, say Alice, 

were to follow on the same path as Bob, the reader can easily see that the needed 

profile would be in the Profile Cache, assuming Alice follows Bob closely enough that 

the profile has not been replaced by a newer profile.

I f  a matching profile is not found in the Profile Cache, the Profile Manager requests 

the information from the Rule Warehouse. The Rule Warehouse is a Datalndexed- 

based data warehouse that stores action rules, as described in Chapter 7. After the 

Rule Warehouse returns the matching rules, the Profile Manager generates a hint, 

and sends it  to the WAS. This profile w ill also now reside in the Profile Cache until 

a decision is made to discard it.

The rules stored in Rule Warehouse are generated by a data mining engine using 

sequential pattern mining. The data mining engine takes a Session Log, i.e., click

stream and transaction information generated by various users clicking in the web 

site, as input, and generates a set of rules as output. C lick and transaction data 

is added to the session log in real time (as noted by the solid lines in Figure 25), 

while the mining of the session log and update of the Rule Warehouse takes place 

offline (shown by the dotted lines in Figure 25). The Rule Warehouse is periodically 

updated, via an offline process, to incorporate recent behavior.

8.2 Technical Details

In this section, we describe the underlying technical details of the OUIS. We first 

present the details of the Profiler component. This is followed by a discussion of the
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role of the Rule Warehouse and its interaction w ith the OUIS components.

8.2.1 Profiler

Figure 26 provides a graphical overview of the technology that forms the basis of 

the Profiler module of the OUIS. We first describe the interaction between the d if

ferent components of the Profiler. This is followed by a detailed discussion of each 

component.

Profiler

Figure 26: OUIS Profiler Module

The Profile Manager shown in Figure 25 in Section 8.1 consists of three modules, 

the Cache Manager, the Query Handler and the Cache Cleaner. We describe each of 

these modules in turn.

The Cache Manager monitors incoming hint requests, generates hints from pro

files, and maintains the Profile Cache and and Clickstream Cache structures. The 

details of the cache structures are described later in this section.

For cache misses, i.e., situations where a needed profile is not found in cache, the 

Cache Manager generates a Profile Query (PQ) to retrieve the needed profile from 

the Rule Warehouse. When the PQ has been processed, the Cache Manager receives 

a profile in response. This profile is then used to generate a hint and update the 

Profile Cache, as described in Section 8.1.2.
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The Query Handler handles the communication between the Profiler and the Rule 

Warehouse. The Query Handler accepts PQs, formulates the appropriate queries (in 

the format described in Chapter 7), and submits the queries to the Rule Warehouse. 

The Query Handler formats each query result as a profile, and forwards it to the 

Cache Manager.

The Cache Cleaner removes outdated information from both the Profile Cache 

and the Clickstream Cache. The idea behind the Cache Cleaner is sim ilar to the 

clock hand idea in classical operating systems [134J.

8 .2 .1 . 1  P ro file  Cache

We begin our discussion of the Profile Cache with a note on the basic structure of the 

cache. The cache consists of a (configurable) number of variable-sized elements, called 

Cachelines (CL). Each CL can store at most one instance of a profile. The Cache 

Manager accesses a CL through a hash index on the RA  (i.e., antecedent) portion of 

each CL’s profile. For convenience, we remind the reader that a profile consists of an 

RA  and an RC, where an RC  is the set of rule consequents matching the RA  (refer 

to Chapter 6  for the precise structure of a profile).

CLs have three possible states:

In the em pty state, a CL contains no profile. A ll CLs are empty at system startup. 

A CL returns to this state when is has been selected for replacement, before a new 

profile has been stored in it.

In  the requested state, the CL is awaiting a response to a PQ. Here, the RA  

portion of the profile has been instantiated, but the RC  (i.e., consequent) portion 

has not. A CL moves from the empty state to the requested state when the Cache 

Manager receives a profile request, but does not find the needed information in the 

Profile Cache, i.e., when a query must be submitted to the Query Handler. The CL
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remains in the requested state until the Query Handler receives the needed response 

from the Rule Warehouse and instantiates the RC  portion of the profile.

In the fu ll state, the CL contains both the R A  and RC  portions of the profile. A 

CL enters the full state when the Cache Manager receives a profile from the Query 

Handler (in response to a query), and remains in this state until it  is selected for 

replacement.

A key aspect o f any caching system is cache management. In particular, given a 

constrained cache size, cache replacement is especially critical. While there are many 

well-known cache replacement policies that can be used to control replacement for 

the Profile Cache, the OUIS employs a predictive replacement policy which exploits 

user navigation patterns [142]. This replacement policy is enabled by performing 

lookahead queries on the Rule Warehouse. We later discuss these lookahead queries 

in more detail. For now, we now describe the replacement policy.

As discussed previously, the Cache Manager stores recently requested profiles in 

the Profile Cache. The u tility  of caching such information is clear. Consider, for 

example, the case of two users, Bob and Alice, who are both interested in the same 

item, book B. In this scenario, Bob enters the site at the home page, and navigates 

through the product hierarchy to the page offering book B . Alice enters the site just 

after Bob arrives, and navigates the same click sequence. Clearly, since the profiles 

used to generate hints for Bob are likely to be located in the cache at this time, these 

profiles can be used for Alice’s as well, saving the expense o f querying the warehouse. 

This is the intu itive basis of the cache replacement policy employed by the OUIS.

In order to ensure that useful profiles are retained in the cache, the Profiler needs 

to be able to detect situations in which one user is following behind another, and 

utilize this knowledge in the cache replacement policy. For this purpose, the notion 

of following distance between two CLs is defined.

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

D e fin itio n  3 Consider two CLs Q  and Cj, containing profiles Pi and Pj, respec

tively. Assume that these CLs and profiles exist in the context o f an e-commerce site 

with a catalog T . The fo llow ing  distance from Ci to Cj, denoted by F{Ci Cj), 

is the minimum number of actions required by a user whose clickstream sequence 

currently matches Pi to match Pj, in the context o f T.

For example, consider a situation where a user has traversed the click sequence 

(Na, Nb, Nc, Nd). The user’s traversal of this sequence has caused profiles Pi and Pj 

to be loaded into the profile cache (PC), where Pi.RA =  (Na,Nb,Nc) and Pj.RA =  

(Nb, Nc, Nf) (assuming a clickstream length of 3). Assume that Pi and Pj reside in 

CLs Ci and Cj, respectively. Clearly, F(C, -» Cj) =  1 , because a user w ith profile 

Pi, need only click on link c to be ascribed to profile Pj.

This notion must be extended to include the possibility that multiple users might 

be traversing the same click sequence at the same time. To accommodate this situ

ation requires identifying the user that is closest to a particular CL in a particular 

click sequence. This concept if  referred to as the lowest following distance (LFD) of 

a CL.

D e fin itio n  4 Consider a set o f CLs {C i, C-i,. . . .  Cn}. The lowest following distance 

of a CL, say Ci, is denoted by LFD (Ci) and is given by:

LFD(Cj) =  mm[F(Cv -> Ci), F(C2 -+ Ct) , . . . ,  F(Cn -> C,)]

LFD is computed online for a CL by broadcasting a user’s position to each CL 

that is w ithin a configurable maximum lookahead distance (MLD) ahead o f a user’s 

current CL. Specifically, w ith each user click, the Profiler updates the distance for 

each CL w ithin MLD ahead of the current CL (based on permissible actions on each 

node), where MLD is a configurable parameter. For a CL w ith an undefined LFD, 

i.e., where no user w ill need it  w ithin MLD clicks, the CL’s LFD value is set to MLD.
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Broadcasting LFDs occurs via a set of CL pointers associated w ith each node. 

Specifically, CL Ci contains a set of pointers to other CLs, corresponding to the links 

available from the last node in C;’s antecedent. For example, consider the situation 

where Ci holds profile P,-, w ith =  (Na,Nb,Nc) and CL Cj holds profile Pj

with Pj.RA =  (iVfc, Nc, N't)- Let us further assume that a user can traverse the click 

sequence (Na,Nb,Nc,Nd). In this situation, there exists a pointer from Ci to Cj, 

denoting that Cj is reachable from Ct, shown graphically in Figure 27.

RA:

Figure 27: CL Pointer Example

The Cache Manager updates these CL pointers for each newly instantiated CL,

i.e., when a CL enters the full state. For example, consider the situation where Cj 

holds profile Pfc w ith Pk-RA =  (iVfa, Nc, Ne), and where a profile Pj, w ith Pt.RA =  

(Na, Nb, Nc) is about to be added to the cache into CL C,. We assume, for the 

purposes of this example, that a user can traverse the click sequence (Na, iVj, iVc, iVe). 

In this situation, the Cache Manager sets a pointer in CL i pointing to CL k, as 

shown in Figure 27.

Having laid the groundwork for the cache replacement policy, we move on to 

discuss this policy in detail. We note first that the most useful CLs in the cache are 

those w ith low LFDs, since these are the items likely to be needed soonest. Thus, the 

cache replacement policy should take following distance into account in selecting CLs
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for replacement. However, in addition to LFD, it  should also take time into account. 

In particular, CLs w ith low LFDs should be given priority over CLs w ith higher LFDs, 

and for CLs of the same LFD, CLs that have been used most recently should be given 

priority over “older”  CLs, i.e., those that have not been used as recently.

This cache replacement policy is implemented using a series o f priority queues, 

shown in Figure 28 as Cache Queues (CQ), numbered I  to MLD. Each queue repre

sents a specific LFD, e.g., CQl stores CLs w ith a LFD value of 1 , CQ2  stores CLs 

w ith a LFD of 2, and so on. Each queue is ordered by time, w ith the oldest CL, i.e., 

the least recently used CL, at the front of the queue.

These cache queues are maintained in the following manner. As a user navigates 

on a click sequence, the LFD values for CLs on that sequence w ill decrease. When 

a CL’s LFD values changes, it is moved to the end of the appropriate cache queue 

for its new LFD value. When a CL is referenced (i.e., a cache hit occurs), the CL is 

moved to the end of the queue, thus maintaining the queue’s time ordering.

Profile Cache

Figure 28: Profiler Cache Detail

CLs are replaced first based on LFD. More specifically, CLs are first chosen for 

replacement from the MLD queue. I f  there are no CLs in the MLD queue, CLs are 

replaced from the (MLD - 1) queue, and so on. W ith in each queue, priority is given to 

CLs in most-recently-used order, choosing the least recently used CL for replacement
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first. Since each queue is ordered based on time, the CL at the front of the queue is 

always the least recently used, and is the first chosen for replacement.

Note that this prioritization scheme leaves open the possibility that CLs may sit 

unused for a long time in a cache queue. This occurs when a C Ls distance is updated 

because it is on a possible future path for a user. I f  the user chooses an alternate 

path, the above prioritization scheme has no means of resetting the CL’s distance 

value to the default value. This situation is handled by noting the most recent access 

time of a CL w ith a timestamp. The Cache Cleaner module periodically checks all 

CLs in the cache, and removes CLs w ith timestamps more than Tmax time in the past, 

where Tmax is a configurable threshold value.

8.2.1.2 Clickstream Cache

As noted above, the Clickstream Cache stores user clickstreams for users active on 

the site. A Clickstream Cache element has a very simple structure -  it  need only store 

a userlD and the most recent C SL  user clicks. Since Clickstream Cache elements are 

simple data structures and are not reusable for multiple simultaneous users, an off-the- 

shelf technology, such as an object database, can be used as the caching mechanism.

8.2.2 Rule Warehouse

As mentioned previously, the Rule Warehouse is a Datalndexed-based data warehouse 

that stores action rules. The rule warehouse is designed using one of the design 

strategies presented in Chapter 7. Since we have described the technical details of the 

warehouse in previous chapters, we do not elaborate further on this aspect. Rather, 

we focus on the role of the Rule Warehouse in the overall system architecture and its 

interaction w ith the other system components.
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8.2.2.1 Interaction with the Profiler

The Rule Warehouse is used to serve two types of requests from the Profiler: (1) 

requests for cache misses, i.e., requests made when a needed profile is not found in 

the Profile Cache, and (2) anticipatory requests, i.e., requests for profiles that users 

are likely to need. The latter type o f request refers to the lookahead queries used to 

support the predictive cache replacement policy described in Section 8.2.1.1 . These 

profile requests are simply CLs in the requested state, queued for processing by the 

Rule Warehouse. Both types of requests use the same profile query (as presented in 

Chapter 7). The main difference is the nature of the two types of queries - requests 

for cache misses are needed with certainty whereas anticipatory requests are needed 

with some probability (and perhaps may never be needed).

For this reason, the profile requests must be prioritized. In particular, requests for 

cache misses should be processed before anticipatory requests. In addition, priority 

should be given to requests for profiles that are likely to be needed in a user’s next 

click over those likely to be needed after 2 clicks, and so on. Like CLs containing 

fu lly instantiated profiles, request CLs are assigned LFD values. Here, the LFD value 

refers to how soon the profile is needed. Thus, a request generated by a cache miss 

has an LFD value o f 0, indicating that it is needed immediately, while an anticipatory 

request for a profile that a user can reach in 1  click has an LFD value of 1, and so on.

Request CLs are prioritized in Data Request Queues, shown graphically in Fig

ure 28. As each request CL is generated, it  is placed at the end of the data request 

queue matching its LFD value. The Query Handler module services requests in in

creasing priority order; w ithin each queue, requests are serviced in first-in-first-out 

order. Note that this queuing mechanism may generate requests for information that 

is never needed, e.g., if  a user chooses a different path from the path the Profiler pre

dicted. Here, a cleaning mechanism sim ilar to the Cache Cleaner (described above)
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is used to remove unneeded requests.

For both types of profile requests, the Rule Warehouse must provide extremely 

fast responses. A profile is used to determine the content that is served for a given 

request, so page generation cannot be completed un til a profile has been served. Thus, 

any delay in this process w ill delay the delivery of the user’s web page. In the next 

chapter, we w ill examine the overall system performance in terms of response time. In 

particular, we w ill show how a Datalndexed warehouse can significantly outperform 

a conventional relational DBMS in the OUIS. We w ill also examine the impact of 

lookahead queries on overall system performance.

8.2.2.2 In te ra c tio n  w ith  the D ata  M in in g  Engine

In addition to the Profiler, the Rule Warehouse also interacts w ith the Data Mining 

engine. Each time the mining process runs, the Rule Warehouse must be updated to 

reflect the changes. These changes prim arily impact the RULES table, so we focus on 

the maintenance of this table.

The mining o f the session logs can be done w ith any frequency. The mining process 

is based on sequential mining as described in Chapter 6 . The changes that impact 

the RULES table may include adding new rules, deleting rules that no longer apply, or 

updating the consequent probabilities for existing rules. We now discuss each type of 

change in turn. For the purpose of this discussion, we assume that the LD2 design 

strategy (refer to Figure 21 in Chapter 7) is used.

•  A d d in g  Rules. When a new rule is generated, it  is simply appended to the 

RULES table. This is accomplished by first applying MD5 to obtain the surrogate 

value for the RA. For each of the BDIs (RA and P ro b a b ility ), the last block 

is loaded and the data values are appended. For each of the JDIs, a lookup 

on the referenced BDI is done (requiring a scan of the referenced BDI) to get
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the pointer value to be stored in the JDI. The last block o f the JDI is then 

loaded, and this pointer value is appended. Thus, the to ta l cost to add a rule 

is as follows: for each BDI, a read and write access; for each JDI, a scan of the 

referenced BD I and a read and write access for the JDI.

•  D e le ting  Rules. Rules may need to be deleted if  they are no longer used. 

For instance, a change in an e-commerce site may render certain nodes invalid. 

Structurally, deletion is implemented by maintaining a b it vector, having car

dinality equal to the cardinality of the table, where set bits indicate deleted 

records. There are several ways to determine which rules should be deleted. 

One such method is to use time, i.e., maintain a last access timestamp for each 

record. Periodically, a process (sim ilar to the Cache Cleaner in Section 8 .2 ) 

runs which removes rules that have not been requested w ithin some maximum 

time threshold. Another method is to explicitly specify a set of rules to delete. 

This can be done by specifying the set of RAs using the SQL DELETE command 

supported by the Rule Warehouse. For either approach, the cost to delete a 

rule is a scan of the RA BDI and a read and write to access the appropriate bit 

vector block.

•  U pda ting  Rules. One of the greatest drawbacks of the Datalndex approach 

is that it  is not designed to efficiently support in-place updates. It  w ill typically 

be quite expensive to load a ll the blocks that correspond to a particular record. 

In the case of the Rule Warehouse, however, changes to rules only impact one 

BDI, the P ro b a b ility  BDI. Updates can be made by first retrieving the appro

priate RA block, which requires a scan of the RA BDI. Then the corresponding 

P ro b a b ility  BD I block is loaded and updated. Thus, the to ta l cost to up

date is a scan o f the RA BDI plus a read and a write access to the appropriate 

P ro b a b ility  BD I block.
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Another approach to maintaining the Rule Warehouse is to rebuild the warehouse 

each time. However, given the vast size o f a typical Rule Warehouse, this w ill usually 

be an expensive process. Using the above techniques, it may be necessary to rebuild 

the warehouse periodically to remove the effects of fragmentation that are the result 

of record deletions.
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Chapter 9

Online User Interaction System 
Performance Evaluation

In this chapter, we present the results of a set of experiments which demonstrates the 

performance of the Online User Interaction Server (OUIS), which was described in 

Chapter 8 . These experiments follow the same methodology as those reported in [42]. 

In fact, some of our results validate the findings in [42]. In our experiments, we focus 

on the role of the Rule Warehouse and its impact on overall system performance. 

We first describe our implementation, experimental methodology, and performance 

metric. Finally, we present our experimental results.

9.1 Implementation Description

The implementation of the OUIS used for these experiments consists prim arily of 

two modules, the Curio Rule Warehouse and the Profiler. The implementation of 

Curio was described in detail in Chapter 5, so we do not elaborate on the details 

here. Both Curio and the Profiler are written in C /C ++  using ObjectSpace STL 

and Communication Toolkits, and compiled w ith Visual C + +  V6.0. Curio and the 

Profiler each run on separate Pentuim I I I  (450MHz) single-processor NT Server V4.0 

(SP5) machines, each w ith 18GB disk and 256MB RAM. Communication between 

modules is implemented w ith sockets over a local Ethernet network.
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9.2 Experimental Methodology

Load is simulated ou the system by generating user requests, which represent clicks on 

an e-commerce site. Specifically, a User Process models a specific user’s interaction 

w ith the site. These User Processes are generated on an NT workstation (SP5) 

using a user simulator developed in JDK 1.2, and submitted as requests over a local 

Ethernet network. Each Concurrent User Process (CUP) submits requests as follows: 

As soon as the CUP enters the system, it submits a request. As soon as it receives a 

response, it  immediately submits a new request, i.e., we do not include “reading time” 

in our experiments in order to simulate a higher user load. The maximum number of 

permissible concurrent UPs is denoted as CUPLevel. Thus, CUPLevel denotes load 

on the system.

CUPs arrive as a Poisson process w ith interarrival times averaging ArrivalRate, 

and depart after making NumClicks requests to the system, whereNumClicks is dis

tributed normally w ith mean MeanClicks and standard deviation StdClicks. CUPs 

navigate through the product catalog. Navigation patterns have been studied exten

sively in the literature [18, 7, 41]. A common finding of these studies is that the 

number o f requests for a given page in a web site most often follows a Zipfian distri

bution [18, 7]. In the context of web site navigation, this distribution implies that 

80% of the users follow 20% of the navigation links. In other words, locality is often 

present in user navigation. To model such locality in our experiments, each CUP is 

presented w ith a set of links from which he can choose his next click, and the link 

choice is based on a Zipfian distribution drawn from the action probabilities in the 

rulebase.

The product catalog and rulebase data is simulated. Each product catalog consists 

of a number of items, Numltems, which appear as leaf nodes in the product catalog 

hierarchy. For each product catalog size, CUP traversals were simulated to generate
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a ruleset. Each ruleset consists of RuleBaseSize rules. The rules in the rulebase and 

the Zipfian distributions used for CUP navigation during the experiments are both 

based on the same underlying navigational dataset.

The Profile Cache consists of CacheSize cachelines or elements, where CacheSize 

is expressed as CachePct, a percentage of the rulebase size. Specifically, CacheSize= 

CachePct x RuleBaseSize. The Profile Cache is organized on the basis of Lookahead- 

Distance Cache and Data Request Queues.

The rules in the Curio Rule Warehouse are stored according to the logical design 

L D l described in Section 7.2. As described previously, this schema consists of a fact 

table and two dimension tables. The query used to retrieve profiles (also described 

in Section 7.2) is a 3-way jo in  query on the RULES, ACTIONS, and NODES tables with 

a range restriction on minProbability and point restrictions on the ActionID  and 

NodelD columns. Note that we use a clickstream length (C S L ) of 3 for all experiments, 

so there are 3 action-node column pairs in the RULES table.

Table 13 shows the minimum and maximum values of the various system load and 

data size parameters used in our experiments.

Parameter M inim um Maximum Parameter M inim um Maximum
ArrivalRate 2 2 Numltems 5K 60K
MeanClicks 30 30 RuleBaseSize 175K 1000K
StdClicks 5 5 CacheSize 2K 60K
CUPLevel 1 0 125 LookaheadDistance 1 4

Table 13: Nominal Parameter Values

9.3 Performance Metric

To evaluate the performance of the OUIS system, we use Average Response Time 

(ART), i.e., the average time from a user's click (i.e., request) to the response of the
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OUIS. Thus, ART is simply the sum of the response times for a ll clicks in the system, 

divided by the to ta l number of clicks made in the system:

* ry-n  -̂‘{trespcmse tclick)

"  TotalClicks

We chose these tim ing points, om itting time required for some typical events (e.g., 

the time required for a web/application server to build a web page for the user) in 

order to highlight the performance of the OUIS components.

A ll performance graphs exhibit mean values that have relative half-widths about 

the mean o f less than 10% at the 90% confidence level. We only discuss statistically 

significant differences in the ensuing reporting section. Each data point represents 

the average o f five experimental values.

9.4 Experimental Results

In this section, we present our experimental results. We first present the baseline 

results, and then examine the sensitivity of the system performance when certain 

parameters are varied.

9.4.1 Baseline Results

In the baseline experiments, our aim is to show how Datalndex technology enables 

true online user interaction. Since virtua lly a ll existing personalization technologies 

use commercial databases for storage and retrieval, we compare the performance of 

the OUIS under two scenarios: (1 ) w ith a Datalndexed Rule Warehouse, and (2 ) w ith 

a widely used commercial data warehousing product. Our contention is that existing 

commercial solutions are unable to scale to meet the requirements o f true online user 

interaction. We chose Oracle 8 i as the commercial data warehousing product, since
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it  is a common choice in existing personalization products.

For these experiments, identical datasets corresponding to the LD1 design were 

loaded into both Curio and Oracle 8 i. For the Oracle configuration, the physical 

design of Section 7.3 was used. In other words, bitmapped indexes were defined on 

the restriction columns (the 3 Action and Mode columns and P rob ab ility  column in 

the RULES table) and on the projection columns (ACTIONS.Label and MODES.Label). 

We also assume that bitmapped jo in  indexes (BJIs) are defined on the foreign key 

columns (RULES.ActionC and RULES.NodeC).

Oracle was run on a separate machine under Windows NT Server, connected via 

SQL-Net over a local Ethernet network. A ll other modules in the system, including 

the Profiler (for the experiments including the Profiler), were held constant.

Figure 29 shows two curves: (1) Curio w ith the Profiler (labeled “Curio-Profiler” ), 

and (2) Oracle w ith the Profiler (Oracle-Profiler), i.e., replacing Curio w ith Oracle 

in the OUIS. CachePct, RuleBaseSize, and LD remain constant at 5%, 500K, and 3, 

respectively. The points plotted on the curves show steady state values for ART for 

each CUPLevel value.

We first consider the Curio-Profiler curve, starting w ith a discussion of the general 

shape of the curve. The curve is exponential, i.e., as CUPLevel increases, the rate of 

increase of the slope increases. A t low loads, i.e., between CUPLevels o f 10 and 50 

the slope o f the curve is fa irly low. In this range, the system is not overwhelmed by 

requests. As the load on the system increases, the rate of increase o f the slope of the 

curve also increases. Here, a larger number of users in the system leads to an increase 

in the portion of the rulebase needed to respond to Hint Requests. This, in turn leads 

to higher cache miss rates and a larger number of requests in  the data request queue. 

A  longer data request queue leads to higher response times for cache misses, which 

leads to higher overall ART values.
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Figure 29: OUIS Performance Using Different Warehousing Technologies

The Oracle-Profiler curve in Figure 29 has the same general shape as the Curio- 

Profiler curve, i.e., it  is exponential. However, the ART values for Oracle-Profiler are 

much higher than the ART values for Curio-Profiler. In addition, the rate of increase 

of the slope is much higher for the Oracle-Profiler curve than for the Curio-Profiler 

curve. These differences are a ll due to the greater number of disk accesses required 

to answer the query using the conventional database design. This phenomenon was 

discussed in detail in Chapters 4 and 7. The greater number of disk accesses in the 

Oracle case translates into longer response times, causing the data request queue to 

grow more quickly, and to a larger size. In addition, items are added to the cache 

more slowly, leading to an even longer data request queue. This leads to the higher 

overall ARTs, as well as the faster growth of ARTs, as load on the system increases.

Having compared the system performance using different data warehousing tech

nologies for the Rule Warehouse, we move on to discuss our sensitivity experiments.
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9.4.2 Sensitivity to Cache Size

In  this section, we examine the sensitivity of the OUIS to changes in CacheSize. 

Figure 30[A] shows the impact of having a rule cache. More specifically, Figure 30[AJ 

compares the system performance in the baseline case to the case where there is 

no rule cache, i.e., CacheSize=Q. In this figure, the curves labeled “Curio-0” and 

“Oracle-O” represent the case where there is no rules cache, and the curves labeled 

“Curio-5” and “Oracle-5” represent the baseline case (these curves are the same as 

the Curio-Profiler and Oracle-Profiler curves, respectively, in Figure 29). In the case 

where there is no rules cache, both curves exhibit the same general shape as their 

baseline counterparts. However, in both cases, performance degrades when no caching 

is employed. Thus, as expected, the rule cache improves the performance of the Rule 

Warehouse.
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Figure 30: [A] Impact of Rule Cache; [B] Effect of Varying CacheSize

As in the baseline case, the Curio-enabled OUIS outperforms the Oracle-enabled 

OUIS. For instance, when CUPLevel= 10, the Oracle-enabled OUIS has an ART of 

about 24 seconds, whereas the Curio-enabled OUIS has an ART of about 2 seconds. 

When CUPLevel is increased to 100, the Oracle-enabled OUIS has an ART of about
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195 seconds, whereas the Curio-enabled OUIS has an ART of about 70 seconds. 

When Curio is used w ith no caching (Curio-0), the ART starts to increase quickly 

when CUPLevel is increased beyond 75. However, even when Curio is used w ith no 

caching, the system performance is significantly better than the case where Oracle is 

used w ith caching (Oracle-5).

Figure 30[B] shows the effect o f CacheSize on the performance of the Curio-enabled 

OUIS. In this figure, there are three curves for CachePcts (i.e., percentages of the 

RuleBaseSize) o f 4%, 5%, and 6 %, while LD and RuleBaseSize remain constant at 3 

and 500K, respectively. We note that the curve for CachePcts=o% is repeated from 

Figure 30[A].

The curve for CachePct= 4% has the same basic shape as the curve for CachePct= 5%: 

however, the ART values are higher, and the difference in ART values between 

CachePct= 4% and CachePct= 5% increases as CUPLevel increases. This occurs be

cause the smaller cache size causes increased cache contention for CachePct= 4%. 

Here, the cache miss rate for CachePct=A% is higher than the rate for CachePct=5%.

This leads to longer data request queues, and higher overall ARTs.

The curve for CachePct= 6 % has the same general shape as the curve for CachePct=5%, 

but has lower ART values. This is due to decreased cache contention -  a larger cache 

retains more useful profiles, leading to fewer requests for the profile warehouse, and 

shorter data request queues. This, in turn, leads to lower ARTs.

Thus, from Figure 30[B], we conclude that larger cache sizes w ill lead to lower 

ARTs, while smaller cache sizes w ill lead to higher ARTs.

9.4.3 Sensitivity to Warehouse Design

We now examine the impact of the design of the Rule Warehouse on the performance 

of the overall system. For this experiment, we compare the performance o f the system

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Curio-LD2 — i—  
Oracle-LD2 —x—  
Curio-LD1 

Oracie-LD1 —a—

120

T3
o 100O©to
©
E
K
©
<0cs.in<0CE

<o
I

20 400 60 80 100
CUPLevel

Figure 31: OUIS Performance Using Different Rule Warehouse Designs

(i.e.. ART) when the Rule Warehouse design is changed from L D l to LD2. The LD2 

design replaces the 3 Action-Mode columns in the RULES table w ith a single column 

(RA) containing the MD5 hash value of the RA. MD5 was incorporated into the OUIS 

using a C-F+ implementation that is available in the public domain [1 ].

Figure 31 displays the ART curves for the OUIS using the two different design 

strategies. Note that the curves labeled “Oracle-LDl” and “C urio-LD l” correspond 

to the curves labeled “Oracle-Profiler and Curio-Profiler” , respectively, in Figure 29. 

The overall shape of the curves for LD2 remains the same as for L D l, and both the 

Curio and Oracle cases benefit from the design change. As the figure shows, the 

Oracle-Profiler case is much more sensitive to this design change than the Curio- 

Profiler case. This phenomenon validates our analytical findings in Section 7.4.2.

Our experiments thus far have demonstrated the superior scalability of the Curio- 

enabled OUIS over the Oracle-enabled OUIS. For this reason, in the remaining ex

periments, we only consider the Curio-enabled OUIS.
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Figure 32: Effect of Varying Lookahead Distance 

9.4.4 Sensitivity to Lookahead Distance

In this experiment, we show the effect of prefetching profile data and thus examine 

the u tility  of the Rule Warehouse in serving anticipatory requests. Figure 32 shows 

four curves, each showing the change in ART for different lookahead distances (LDs) 

(see Section 8.2.1.1 for a discussion of LD) as CUP Level increases, while the CachePct 

and the RuleBaseSize remain constant at 5% and 500K, respectively.

The curve for LD=3 is exactly the same as the Curio-Profiler curve in Figure 29. 

The curve for LD=2 has the same shape as the LD=3 curve, but appears above the 

curve for LD=3. This occurs because the system caches ahead further for LD=3 than 

for LD=2. Thus, needed items are less likely to be in cache for LD=2 than for LD=3. 

This leads to higher response times for LD=2 than for LD=3. This line of reasoning 

extends to the curve for LD=1 (which also has a shape sim ilar to that of the LD=3 

curve) and explains why the ART values for LD = 1  are higher than for LD=2, i.e., as
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the lookahead distance decreases, ART increases.

The uppermost curve (LD=0) shows the response times when no prefetching is 

employed. This case clearly performs worse than the cases where prefetching is used, 

indicating that it  is indeed beneficial to prefetch.

The curve for LD=4 has a shape sim ilar to the LD=3 curve, but has higher ART 

values than the LD=3 curve. This occurs because the Profiler w ith LD=4 looks too 

far ahead, i.e., replaces cache items that are highly likely to be reused w ith items that 

have been fetched in anticipation of their need.

Based on the results of this experiment, we conclude that there exists an optimal 

LD. Clearly, choosing an LD that caches too far ahead w ill have an effect similar to 

that of not caching far enough ahead -  both lead to sub-optimal ARTs. These results 

provide further support for the u tility  of the Rule Warehouse, indicating that the Rule 

Warehouse does indeed help improve system performance by serving anticipatory 

requests.

9.4.5 Sensitivity to Size of Rule Warehouse

Figure 33 shows curves for the change in ART for RuleBaseSizes o f 175K, 500K, and 

1000K rules as CUPLevel increases, while the CachePcL and LD remain constant at 

5% and 3, respectively. We note that the curve for 500K is exactly the same as the 

Curio-Profiler curve in Figure 29. The curve for 175K rules is sim ilar to the curve for 

500K rules, but appears below the curve for 500K rules, i.e, shows lower overall ART 

values. Clearly, a smaller rulebase size w ill provide lower data warehouse response 

times, which results in  lower response times for the OUIS.

Similarly, a larger rulebase size of 1000K results in higher warehouse response 

times. This is why the I000K curve has a shape sim ilar to the 500K curve, but shows 

higher ART values than the 500K curve.
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Figure 33: Effect of Varying RuleBaseSize

Based on the results of this experiment, we conclude that larger rulebases lead to 

higher overall ARTs, while smaller rulebases give lower ARTs.

9.5 Discussion

The performance results presented in this section have provided many useful insights 

regarding the role of the Rule Warehouse in an online user interaction solution. We 

have shown that the Rule Warehouse plays a key role in such a system. Our results 

demonstrate the superior scalability of a Rule Warehouse based on the Datalndex 

paradigm over a warehouse that is based on a conventional design, and thus provides 

further support for the claim that Datalndex technology enables true online user 

interaction. We have also examined the sensitivity of the system to changes in certain 

key parameters (e.g., cache size and rulebase size), and shown that the system scales 

to support a wide range o f the parameters considered in the experiments.
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Chapter 10

Discussion

In this dissertation, we have proposed an approach for performing true online user 

interaction. The proposed approach addresses two broad issues: (1 ) scalable data 

warehouse design, and (2) efficient generation of online dynamic profiles. We now 

discuss the implications of our work in both areas.

10.1 Scalable Data Warehouse Design

A key component in any online user interaction solution is a data warehouse. The 

warehouse stores the historical customer data (e.g., navigational, transactional, de

mographic) that is used to generate responses. Since responses must be generated 

in subsecond time frames, the warehouse must be able to provide interactive query 

response times. There are several factors that make this a difficult task:

•  The size of the warehouse is typically vast (e.g., ranging from hundreds of 

gigabytes to a few terabytes).

•  The site w ill often experience high user loads (e.g., thousands to tens of thou

sands of simultaneous users at popular sites).

•  The queries are typically ad-hoc and complex, involving joins o f very large 

tables.
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While there has been significant work in the data warehousing field, existing ware

housing solutions are unable to scale to provide interactive query response times under 

the above-mentioned conditions. In particular, the physical design of existing data 

warehousing systems mandates storing index structures in addition to the base data. 

As we have shown in our analyses, this approach often results in significantly higher 

query processing costs, due to the increased number o f disk accesses required to an

swer queries. To address this issue, we have proposed a new data storage and retrieval 

paradigm for data warehouses, referred to as Datalndexes. W ith Datalndexes, the 

structures which store the data also serve as indexes. Hence, there is essentially no 

indexing cost. We have presented two types of Datalndexes, as well as two efficient 

algorithms for performing join queries w ith Datalndexes.

The first algorithm, referred to as Star Join with Large Memory (SJL), assumes 

that enough memory exists to hold the Datalndex structures for a ll display columns. 

When this assumption does not hold, a second algorithm, referred to as Star Join 

with Small Memory (SJS), can be used. While SJS is not as efficient as SJL, it  has 

neglible memory requirements.

We have derived expressions that show the expected performance of Datalndexes 

and a number of other indexing approaches that have been proposed and utilized 

in data warehousing. Based on these expressions, we have analytically shown that 

the performance obtainable w ith Datalndexes is most often superior to that of even 

the best conventional approach. Specifically, we have analyzed the performance of 

Datalndexes w ith respect to range selections and star joins, two of the most common 

operations in OLAP. The corresponding results are summarized in Table 14.

We have also presented the results of an implementation based on Datalndexes, 

which further supports our analytical findings and supports our belief that a Dataln- 

dexed data warehouse can indeed provide the subsecond response times required for 

online user interaction.
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Structure Best for Range Selections When ...
Bitmapped Indexes Small Ranges
BDI Medium to Large Ranges and Narrow Columns
JDI Medium to Large Ranges and Wide Columns

Structure Best for Star-Joins When ...
Bitmapped Indexes 
& Bitmapped Join 
Indexes

Very High Selectivities

Datalndexes Otherwise

Table 14: Summary of Results

In addition to our analytical and implementation results, we summarize a number 

of other advantages of the Datalndex approach:

Reduced Number of Block Accesses: The vertical partitioning employed by the 

Datalndex approach brings about an additional advantage. A large portion of 

OLAP queries access only a subset of the attributes o f the tables examined. In 

a conventional RDWMS, even if  the value of a single attribute is needed, entire 

records must be loaded from disk, because attribute values inside unindexed 

records are stored contiguously. In other words, conventional RDWMSs most 

often load extraneous data. Because Datalndexes partition warehouse data by 

column, only the relevant columns are loaded to answer a query.

High Compressibility: The storage requirements of Datalndexes can be further 

reduced by compressing each index in a given schema. Though this approach 

could also potentially be applied to conventional RDWMSs, storage size reduc

tions are likely to be much higher w ith Datalndexes. Indeed, most compression 

algorithms w ill yield higher compression ratios i f  the set of values being com

pressed ranges over a small domain (and thus displays repetitions) [50]. This 

is more likely to happen w ith a vertical partitioning approach than w ith a con

ventional table, where the data is stored row by row. Moreover, while it w ill
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sometimes be necessary to decompress the data, there exist query-processing 

algorithms that can operate on compressed data. We can hence expect that 

compressed Datalndexes can also provide higher performance gains than com

pressed versions of the other indexes described in this dissertation.

B e tte r M em ory Usage: Queries often access the same column a number of times 

(e.g., when this column appears both in the SELECT and the WHERE clause). 

When these columns are small (which w ill often be true when compression 

is used), or the size of main memory is large, query cost can be significantly 

reduced by keeping one or more of these columns in memory for the duration 

of the query evaluation. Similarly, since the overall size of the database is 

smaller w ith Datalndexes than w ith conventional structures, it is likely that 

the number of memory faults w ill be smaller w ith Datalndexes. For instance, 

consider a database that is 700 MB when implemented using Datalndexes and 

1 . 1  GB when implemented using a conventional indexing scheme, such as the 

B+-tree . Further assume that the size of main memory is 256 Mbytes. We can 

then expect the Datalndex approach to find the required column in memory 

approximately «  36% of the time. On the other hand, the conventional

approach w ill only yield a block h it ratio of about ^ ^ te s  ^  ^3%. Thus, 

the Datalndex approach should yield significant performance advantages by 

reducing the number of times that a data block actually needs to be loaded 

from disk.

Reduced M em ory Requirem ents: The proposed SJL algorithm has the property 

that the memory requirements are independent of the size of the fact table. 

Given the extreme size of most warehouses, this is a valuable property, as it 

allows for the rapid growth that typically occurs in warehouses, particularly 

those supporting web applications (e.g., clickstream analysis).

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Easy W arehouse Refresh: In order to remain up-to-date, a data warehouse must 

be periodically refreshed. That is, its tables and indexes must be updated to 

reflect changes in the real world. Since a warehouse stores a history, a refresh 

consists of a series of append operations to the fact table1 and updates to 

the corresponding indexes. Although appending data to existing tables can be 

performed relatively efficiently, updating the corresponding indexes can be quite 

costly since these indexes might need to be completely reorganized. Since the 

Datalndex approach does not utilize indexes, it  should be clear that updating 

a Datalndexed data warehouse would not incur this additional index updating 

cost. The Datalndex refresh process assumes that data is simply appended; 

i.e., no sorting or other operations are performed. This efficiency in loading was 

clearly demonstrated in our implementation results in Chapter 5. This property 

is indeed desirable since, in many application arenas, the time window available 

for warehouse refreshes is shrinking [2 0 ].

In summary, we have proposed efficient data warehouse design techniques. We 

believe that our proposed techniques are especially applicable in the context of online 

user interaction.

10.2 Efficient Generation of Online Dynamic Pro

files

While the data warehouse provides access to the historical data in an online user 

interaction solution, it  is also necessary to track current user behavior and correlate 

it w ith the historical behavior, so that an appropriate response can be generated

1 Changes to dimension tables occur much less frequently, so we assume that they are not updated 
during a normal warehouse refresh.
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by the application. We have used the term dynamic profile to refer to the behavior 

representation of a user, since it captures changes in user behavior. Generation of 

dynamic profiles is difficult since these profiles must be generated quickly, even when 

a site is experiencing heavy user loads.

To address this issue, we have proposed an online user interaction system that 

consists of a Datalndex-based data warehouse and a caching module. The data 

warehouse stores the information needed to create dynamic profiles and provides 

very fast access to this information. The caching module further improves the system 

performance by storing frequently requested profile information. We have presented 

an implementation of the proposed online user interaction system, along w ith a set 

of performance results which indicate that the system is indeed capable o f providing 

subsecond response times, even under heavy user loads. Our performance results 

have also demonstrated the importance of an efficient data warehouse in the overall 

system. In addition, we have shown that the rule warehouse can improve overall 

system performance by serving anticipatory requests.

10.3 Final Remarks

Our proposed online user interaction system can be readily deployed as part o f a typ

ical e-commerce site architecture. There are basically two integration points between 

our solution and an e-commerce site: (1 ) session logging, and (2 ) communication 

w ith the web/application server. As mentioned previously, session logging is handled 

by a client-side Clickstream Monitor (a Java applet) that sends clicks to the server. 

Communication between the online user interaction solution and the web/application 

server is needed to pass hint requests and responses, and is handled via the TCP/IP 

communications protocol.
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In  this dissertation, we have focused on describing our proposed online user inter

action system in the context of electronic commerce. However, our underlying ideas 

could be applied to virtua lly any content generation system. For instance, the same 

basic concepts could be used to deliver targeted content over broadband.
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